1,176 research outputs found

    Magnetically-controlled velocity selection in a cold atom sample using stimulated Raman transitions

    Full text link
    We observe velocity-selective two-photon resonances in a cold atom cloud in the presence of a magnetic field. We use these resonances to demonstrate a simple magnetometer with sub-mG resolution. The technique is particularly useful for zeroing the magnetic field and does not require any additional laser frequencies than are already used for standard magneto-optical traps. We verify the effects using Faraday rotation spectroscopy.Comment: 5 pages, 6 figure

    Droplet size development in a DISI injector fuel spray

    Get PDF
    In this work, Phase Doppler Anemometry (PDA) measurements are used to test the hypothesis that the mean droplet size in Direct Injection Spark Ignition (DISI) engine fuel spray increases with distance from the injector due to the evaporation of the smaller droplets. In order to understand the role of evaporation, two velocity components and drop size PDA measurements were performed for one plume of a DISI injector using two fuels with widely differing vapour pressures. The measurements were taken along the plume centreline at four different vertical distances from the injector tip between 20 to 50 mm. on the plume centreline to evaluate the development of droplet size distributions along the plume. Measurements are also made across the plume (perpendicular to the plume centreline) at the 30 and 50 mm locations. Measurements using PDA closer to the injector are more difficult due to the high spray density (particularly apparent at 20mm or closer to the injector). A data fitting process is suggested using joint probability distribution functions (JPDFs) to reduce the effect of statistical significance where data rates are low. This improves the description of the PDA derived drop size distribution in regions where the data validation rate is poor. It is found that the evaporation is not the main cause for droplet size increase along the plume. The most likely reason for the increase of the Sauter Mean Diameter (SMD) with distance from the injector is that the smaller droplets move away from the plume centreline through turbulent diffusion at a higher rate compared to larger droplets. Higher axial momentum of the larger droplets reduces their response to turbulent velocity fluctuations and hence their path-lines are less prone to stray from their initial trajectory

    Impact of gasoline direct injection fuel injector hole geometry on spray characteristics under flash boiling and ambient conditions

    Get PDF
    The effect of injector nozzle design on the Gasoline Direct Injection (GDI) fuel spray characteristics under atmospheric and flash boiling conditions was investigated using Phase Doppler Anemometry (PDA) measurements. To understand the impact of hole diameter and conicity, experiments were conducted on two bespoke 3-hole injectors in a pressure and temperature controlled constant volume chamber and in the open air. The measurements were taken radially outward from the injector axis to the outer extent of the plume at distances of 15 mm, 25 mm and 40 mm from the injector tip. Observations of the influence of surrounding gas and temperature conditions and hole design on the injector spray performance were made. Under non-flash boiling conditions, it was found that the injection pressure dictates the length of the spray penetration before collapse occurs, with an increase in pressure resulting in an increase in this length. Comparison of mean velocity and droplet diameter data are also made to understand the performance under flash boiling conditions. Results show that, under flash boiling conditions, the droplet velocity significantly increases while the droplet size reduces. More importantly, it is found that the impact of the flash boiling environment on sprays of different hole geometries is different. Some hole designs offer more resistance against spray collapse. It was found that the mid-sized of the three hole diameters tested here was found to produce a spray that more readily collapsed than that of the smaller or larger hole diameters. In addition, it was found that under flash boiling conditions, the convergent hole had a greater propensity to exhibit spray collapse

    Librarians Assemble! Creating Comics Studies Communities

    Get PDF
    Presented at ACRL 2021. Comics Studies is an emerging field of study that brings scholarly attention to graphic narratives in a variety of published forms. While libraries have long recognized that comics are important materials to include in collections, collection development is only the first step in fostering a Comics Studies community. Librarians have a unique role to play in supporting innovative use of libraries’ collections of comics materials through outreach, education, and programming.This panel features scholar librarians who research, collect, and promote comics in their libraries, describing their experiences with creating comics studies communities at the campus, regional, and international levels.Ope
    corecore