
Abstract platforms of computation 
Conference or Workshop Item 

Accepted Version 

Spencer, M. C., Roesch, E. B., Nasuto, S. J., Tanay, T. and 
Bishop, J. M. (2013) Abstract platforms of computation. In: 
AISB 2013, 35 April 2013, Exeter, pp. 2532. Available at 
http://centaur.reading.ac.uk/35696/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work. 
Published version at: http://www.aisb.org.uk/asibpublications/conventionproceedings 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 

Reading’s research outputs online

http://centaur.reading.ac.uk/licence
http://www.reading.ac.uk/centaur


Abstract Platforms of Computation
Matthew C. Spencer1 and Etienne B. Roesch and Slawomir J. Nasuto2

Thomas Tanay and J. Mark Bishop3

Abstract. Computational formalisms have been pushing the bound-
aries of the field of computing for the last 80 years and much debate
has surrounded what computing entails; what it is, and what it is not.
This paper seeks to explore the boundaries of the ideas of computa-
tion and provide a framework for enabling a constructive discussion
of computational ideas. First, a review of computing is given, ranging
from Turing Machines to interactive computing. Then, a variety of
natural physical systems are considered for their computational qual-
ities. From this exploration, a framework is presented under which all
dynamical systems can be considered as instances of the class of ab-
stract computational platforms. An abstract computational platform
is defined by both its intrinsic dynamics and how it allows computa-
tion that is meaningful to an external agent through the configuration
of constraints upon those dynamics. It is asserted that a platform’s
computational expressiveness is directly related to the freedom with
which constraints can be placed. Finally, the requirements for a for-
mal constraint description language are considered and it is proposed
that Abstract State Machines may provide a reasonable basis for such
a language.

1 INTRODUCTION

Over the last 80 years, computing has developed considerably, but
there is still much debate about what “computing” is. When Alan
Turing broached the field in the 1930’s, he provided a very pre-
cise understanding of computing machines and computable prob-
lems. However, as variations on Turing’s original mechanisms have
been explored, the original definitions have become less appropri-
ate and modern computational praxis now bares little resemblance
to the original conception. The gap between practice and theory in
computer science has been noted in other works [8, 6, 5, 16] which
have strived to provide broad reviews of the field and suggest mod-
ern approaches to the discourse of computing. This discourse will
be further explored here with an aim to provide a unified frame-
work for defining computation and positioning popular computing
formalisms.

There appear to be two central issues within the computing com-
munity: computational expressiveness and the scope of what can be
called computation. The former issue is a discussion about the scope
of problems that can be addressed with different computational for-
malisms, beginning with classical Turing Machines [23] and dis-
cussing other, more advanced concepts [12, 24, 6, 15, 16, 9]. The
latter issue accepts the varying scopes of computational expressive-
ness and the proliferation of computational paradigms and explores

1 email: m.c.spencer@reading.ac.uk
2 University of Reading, UK
3 Goldsmiths, University of London, UK

the boundaries of what computation might be [5]. Both of these is-
sues will be explored here to help establish the depth and breadth of
the proposed framework.

Finally, if there were a unified framework of computation, a for-
mal abstract language for describing programs would be valuable.
Modern programming languages are largely platform dependent but
a number of abstract formalisms [19, 11, 14, 10] might provide pos-
sibilities for platform-agnostic program descriptions. Such program
descriptions will be considered here.

The following paper will first review computational paradigms,
starting with Turing Machines. This discussion will address notions
of super-Turing Machine expressiveness with a specific discussion
on modern views on interaction. Interactive computing discusses
concurrent partially coupled systems which, when shifted to the con-
tinuous time domain, begin to resemble natural physical systems.
To differentiate computation from physical processes, a constructive
view on the boundaries of computation will be explored. From these
previous ideas, a framework of abstract computational layers will
be proposed. Notionally, this framework will encompass the breadth
of computational paradigms. Finally, the requirements of an abstract
program description language for this framework will be discussed.

2 CLASSICAL COMPUTING
2.1 Functions and algorithms
A class of functions, called “effectively computable functions”, con-
tains those functions that can be worked out through finite sequences
of simple mechanistic operations. Prior to the 1930s, such sequences
(known as algorithms), lacked a formal definition and it was poorly
understood which functions were effective and which were not. In the
1930s, both Alonzo Church and Alan Turing approached this prob-
lem whilst addressing the Entsheidungsproblem. Aiming to introduce
a formal description of algorithms, Church produced the λ-calculus
and went on to show the unsolvability of the Entsheidungsproblem
[3]. Simultaneously, Turing approached this same problem, but from
a different angle. Taking seriously the notion of sequences of me-
chanical operations, Turing formalised algorithms with his “abstract
machines” (which are now commonly known as Turing Machines
(TMs)) and went on to provide what is generally accepted to be a
more convincing proof of Church’s result [23]. Ultimately, Turing
Machines and the λ-calculus are equivalent formalisms for repre-
senting the class of effectively computable functions, a point which
is embodied in the Church-Turing Thesis (CTT).

When initially conceptualized, the CTT described this class of ef-
fective functions and the algorithms used to solve them. These al-
gorithms necessarily had the very particular property that they pro-
cessed mechanically, from some input to some output through a fi-
nite sequence of simple, ordered operations. By “mechanistic pro-



cessing”, it was understood that the sequences were carried out de-
terministically, and that no insight or agency could interfere in the
processing. By “simple operations”, it was understood that each op-
eration in the algorithm’s description was trivially performed by a
human mathematician. It was on this basis that Turing conceived of
his machines.

2.2 Turing machines

Turing’s abstract machine involved a tape (a bidirectional, arbitrary
length, linear string of symbols), a read/write head pointing to a loca-
tion on the tape, a set of possible configurations in which the machine
could exist, and a table of instructions that could move the head, read
and write the tape, and change the configuration of the machine. The
machine would proceed mechanically, looking up an instruction in
the table using the current configuration and the input symbol on the
tape. Then, this instruction would be executed, potentially resulting
in modifying the symbol on the tape, changing the machine’s config-
uration, or shifting the tape one step to the left or right. The machine
then proceeded to look-up the next operation from the table and so
on until the machine would finally halt. Between the instructions in
the table and the set of available configurations, each machine could
embody a single algorithm. To execute the algorithm, the input was
provided on the tape and the machine processed until halting. Once
the machine had terminated, the tape would contain the output of the
algorithm. While termination was not an absolute necessity (specif-
ically in the case of computing numbers to arbitrary precision), the
full answer could not be known unless the machine halted.

For the sake of the topic of this paper, the Turing Machine can be
thought of as machine providing a certain intrinsic and determinis-
tic dynamics. These dynamics are predicated on the ability to exe-
cute a small set of elementary operations, specifically, reading and
writing tape symbols, moving the tape, reading the current config-
uration, and changing the configuration. If any of these operations
were non-trivial for the executor, a Turing Machine would not, on
its own, provide a satisfactory formal representation of an algorithm.
Turing Machines are, by their very conception, abstract entities. They
were not designed to be actually implemented, and yet, if each of the
elementary operations is appropriately simple, implementation as a
physical machine could be done by embedding the TM design in a
physical form.

Further to the intrinsic dynamics of TMs, they provide a flexible
approach to customizing the constraints on those dynamics through
the set of configurations and the writing of the instruction table. It
is through this customization that the general class of TMs can in-
stantiate a TM for a specific algorithm. However, there are natu-
ral limitations intrinsic to the TM formalism which cannot be over-
come through this customization (further discussed in Section 2.3).
These limitations were not an oversight, but were necessary for for-
mally representing effectively computable functions. However, mod-
ern digital computers do not exclusively describe this class of func-
tions.

Later in his career, Turing considered several extensions to the TM
concept. An important extension was that of the Universal Turing
Machine (UTM) – a Turing Machine capable of simulating any other
Turing Machine. From this idea, universal computers (for computing
more than a single function) were devised, ultimately resulting in
modern computers. However, since modern computers have a finite
memory, it is argued that they are strictly less powerful than UTMs,
which may have a tape of arbitrary length. Nonetheless, it has been
argued [5] that modern computers can be (and regularly are) used

for more than the computation of functions, and are therefore more
expressive than UTMs. These views will be discussed in Section 3.1.

Other extensions that Turing considered were those that incorpo-
rated non-mechanical components into the machine’s structure; in
other words, including non-trivial operations. Two such components
that are popularly discussed are so-called “oracles” and human users.
In Oracle Machines, the TM is able to consult an all-knowing oracle,
which is capable of delivering a non-trivial answer in finite time,
and while such Oracles do not exist in practice, they do serve to
describe an abstract computing paradigm of consulting an outside
expert. Such consultation is also represented in Turing’ Choice Ma-
chines, in which the TM might pause occasionally to query a human
user for additional input. In both of these cases, the TM architecture
has been extended to include non-mechanical components and would
not be what Turing considered to be “automatic machines” or “purely
mechanical”.

2.3 Restrictions of Church-Turing formalisms
While Turing Machines provide a robust and formal description of
algorithms, they feature a number restrictions which define the space
of their applicability. However, owing to these in-built restrictions,
other, more computationally expressive paradigms can be imagined.
One of the central restrictions to the TM paradigm is the notion of
operating on a finite alphabet of symbols. Since the alphabet is finite,
it cannot represent all real numbers or other continuous concepts.
This has implications for certain types of scientific computing where
arbitrary precision is desirable. This also has implications for consid-
ering TMs as capable of intelligence, owing to limited and inflexible
nature of the alphabet. Further, TMs receive input and emit output
encoded by the same alphabet, reducing the types of functions that
can be implemented (such as are found in the broader set of bijective
mappings).

To consider other restrictions, one must take a larger view of the
TM as a computational machine embedded within an environment
containing at least one other agent. This other agent, the user of the
TM, is implicit in the TM’s definition since the input has to arrive
on the tape from somewhere and the output must be requested for
some purpose that is not the TM’s own. In this wider view, other
restrictions become clear, namely the temporal insensitivity and the
synchronicity of the input and output. In other words, once the user
has provided input to the TM, they must wait some time for the TM
to complete its operation before it delivers output; additional input
cannot be supplied as the TM operates. Also, the input and output
must be specified in the same alphabet. Furthermore, for every in-
put there is guaranteed to be a single output, so concepts including
multi-input/multi-output or streaming interaction with the environ-
ment cannot be modelled. Finally, a TM lacks memory that persists
between inputs, which prevents it from modelling a learning system.

3 HYPER-COMPUTABILITY
It is from the class of effectively computable functions, which the no-
tion of “computability” takes its generally understood meaning. If a
function is effectively computable, it is computable and has an asso-
ciated algorithm for computing it. Likewise, it also has a Turing Ma-
chine or λ-calculus representation. Similarly, if it is not computable,
none of these other representations apply.

The formal definition of “computable” is generally taken to be
“that which is computable by a Turing Machine”. Thus, any machine
formalism that is more expressive or capable than a Turing Machine



is generally called a “hyper-computer” and is capable of “hyper-
computation”, though perhaps adhering to the term “super-Turing”
is clearer. One example is the Zeno-machine, which performs each
subsequent operation in half the time of the previous one, appealing
to the Zeno paradox to perform an infinite number of operations in
a finite span of time. Likewise, most hyper-computers include the
notion of infinity into their construction (infinite length alphabet, in-
finite speed, infinite knowledge, etc) [15] and as such, are unsuitable
models for practical computing or investigating artificial intelligence
or human cognition [16]. However, two types of hyper-computing are
notable for their practical importance: machines that are capable of
continuous/analog information manipulation and machines that in-
corporate real-time interaction with their environments.

In the first case, the TM’s finite alphabet of discrete symbols pre-
vents it from computing problems that require the infinite precision
of real numbers. Specifically, if all numbers must be represented us-
ing a finite length string of symbols from a finite length alphabet, the
range of numerical values is at most a countable. For instance, while
a single symbol, such as π, can represent an irrational number, a finite
alphabet of symbols might not have symbols to represent the values
of e or i and, if it does, then the inter-symbol relationships would re-
quire a look-up table since infinite precision calculations would take
infinitely long to complete. Thus, exact quantities cannot always be
defined or manipulated. Since most empirical measurements involve
such quantities, digital computers are forced to approximate the real
numbers instead. Aside from the purely pragmatic desire to process
on real numbers, digital computers restrict precision when modelling
continuous dynamical systems, which is problematic when consider-
ing the sensitivity of chaotic dynamics. Also as computers are used
to investigate intelligence which is arguably embedded in a continu-
ous physical space, their inability to deal with real numbers limits the
extent of this field of research. However, while the processing of real
numbers is a clearly practical and desirable capability for computers
to have, it is unlikely that it will ever be realized on digital computers
(in which higher precision entails greater space requirements).

On the other hand, interactive computation has been a mainstay
of the software industry for decades; and while it is ubiquitous, it
has only been widely recognized as a super-Turing paradigm within
the last ten years. By now, it is quite clear that many features of
a TM (synchronous input-output, the unified alphabet, and neces-
sity of termination, to name a few) do not describe systems like au-
tonomous robots, word processors, operating systems, or the internet
[26, 12, 6, 5, 16]. For each of these systems, the time-sensitive input
is streamed to the machine as the machine works, and the machine’s
output at any given time is potentially a product of its entire history
of operation. Similarly, there is no single ultimate output that these
machines produce, but rather they are expected to continuously op-
erate, remaining responsive to the environment.

The internet represents another form of interaction, in which the
environment does not simply provide operational input to the ma-
chine, but may also alter the machine’s very construction at any time.
Whether or not these alterations enhance or reduce the machine’s ca-
pability, they may fundamentally change how the machine will be
able to respond to future input, including gaining the capacity to op-
erate on a newer or larger alphabet [12].

What makes interactive computing more expressive than TM-
equivalent paradigms is that interactive computing can express more
than functions. Granted, interactive computing may not be able to
express all functions, but the ones that are TM-computable exist as
a special case where the input-output relationships of the interactive
machine are restricted to the TM definition. Essentially, this general-

izes the purpose of the machine from computing functions to gener-
ally performing a wider set of tasks [6, 5].

3.1 Interaction as hyper-computation
There are many types of the interaction that can be considered, but
not all of them entail a system with super-TM capability. For in-
stance, a TM itself defines interaction between the tape and tape-
head. In the weakest sense, “interaction” merely suggests the pres-
ence of more than one non-independent entity in a system. However,
under specific stronger notions of interaction, the restrictions on the
Turing Machine formalism are relaxed and super-TM expressiveness
ensues. This stronger form of interaction is minimally defined by the
following two characteristics:

Definition 1. Coupling: Current output of an interactive computer
affects its future input.

Definition 2. Persistence: Current output of an interactive computer
is affected by more than current input.

Without these two characteristics added to the current capabilities
of a TM, the interactive machine would have no more expressiveness
than repeated calls to a TM. However, with these two characteristics,
the machine is capable of modifying its environment in a meaningful
way, partially affecting its own future input and therefore making
decisions based on potentially all of the input it has ever received.
While the first characteristic could be considered a property of the
machine’s environment (rather than of the machine itself), it can be
argued that this property provides a type of sensorimotor coupling
within the machine, thus making the machine not just reactive, but
active and proactive as well. It could also be argued that a TM might
have this property in the reactive sense, but without Persistence, lacks
the capability for a long-term action strategy.

It is easy to show at this point that TMs are a special case of this
type of interactive computers where the environment is ambivalent
about the machine’s output and the machine is completely amnesiac.
Thus, interactive computers form a proper superset of Turing Ma-
chines and are therefore more expressive [24].

There may remain some question, however, about whether these
interactive machines are “automatic” in Turing’s sense of the word.
The initial TM was automatic in the sense that once the input was fi-
nalized on the tape, the machine would deterministically produce the
output such that each subsequent configuration of the machine (and
tape) was entirely determined by the previous configuration. It has
been argued that if the machine had paused to query an outside source
for input (from a human or an all-knowing oracle, for instance), then
the machine would not have been purely mechanical. It could be ar-
gued that since interaction with the environment forms a crucial part
of an interactive computer’s function, that an interactive computer is
not purely mechanical. However, there is no reason to suspect that,
given the current configuration of an interactive computer and the
value of the current input from the environment, that the subsequent
operation of the computer would not be entirely deterministic (until
the next input arrived). In fact, given a sequence of input symbols
from the environment, S, if S were fed to two identical interactive
computers that are initially in the same state, both computers ought
to produce identical streams of output. While this example neglects
the organic role of the environment (namely neglecting the first prin-
ciple above), it shows that interactive computers may be automatic
machines. The key to this argument lies in the distinction that the en-
vironment, while a part of the interaction, is not a part of the machine
with which it interacts.



3.2 Models of interactive computing
3.2.1 Persistent Turing Machines

A common model of interactive computing that expresses the prop-
erties of Coupling and Persistence is the Persistent Turing Machine
(PTM) [7]. The PTM formalisms builds from the standard TM by
altering the input-output mechanics and by incorporating internal
memory. This is done by giving the PTM three tapes: one for read-
only input, one for write-only output, and an internal, read/write tape
for working memory. The PTM functions at two time scales: dur-
ing each macro-step, the environment synchronously provides input
on the input tape and consumes output from the output tape, while
the PTM produces the appropriate output for the given input over
a sequence of micro-steps. Thus, while the above two properties of
interaction have been added to the TM construction, the input and
output are still completely synchronous. However, because the in-
ternal tape is persistent across macro-steps, identical input may not
always produce the same output.

3.2.2 Interactive Machines

A similar construct has also been investigated by Van Leeuwen and
Wiedermann [13], referred to as “Interactive Machines” (IMs). While
IMs possess both Coupling and Persistence, it also has a weaker
input-output relationship, defined as the “interactiveness” property,
which states:

Definition 3. Interactiveness: Any time an IM receives a non-null
input symbol from the environment, it must provide a non-null output
symbol to the environment some finite time later, and vice versa.

Thus, rather than have synchronous input and output, such that
input and output can be described in pairs, IMs have asynchronous
input and output, such that any number of inputs can be fed to the
automaton so long as some output is given some time later. While
automata that have interactiveness may have their inputs and outputs
interleaved, there is not even the stipulation that there be a one-to-
one input-output relationship. This weaker input-output relationship
positions PTMs as a special case of IMs. Further, unlike PTMs, IMs
do not operate at multiple time scales, though blank symbols are de-
fined for both input and output which may allow the simulation of
multiple time scales.

3.2.3 Lineages of automata

Another model of interactive computing, Site Machines [24], rep-
resent the notion of a physical machine, such as a desktop com-
puter. Aside from interacting with the machine through its conven-
tional channels of input and output (such as a keyboard and monitor),
one might also alter the machine’s physical construction (by adding
more memory or a new communication interface). These interactions
may serve to augment the machine’s capabilities, or to diminish them
(such as enacting physical harm on the machine’s components), but
either way they have important ramifications for the future of the ma-
chine’s conventional operation. This same concept can be extended
to the Internet as a whole, where new components are regularly added
and removed, not simply changing the computational power, but fun-
damentally altering the machine architecture.

Site or Internet Machines can, at any time, be conceived as com-
plex, multi-dimensional ω-transducers (automatons that process an
infinite input streams into infinite output streams). Then, at specific

times when physical modifications occur, these transducers can be re-
placed by other ones with other capabilities. Thus, Site and Internet
machines are appropriately represented as sequences or lineages of
ω-transducers, and ultimately, the complexity of the input stream is
only limited by the complexity of the most complex transducer. Since
the set of situations in which the input stream evolves its alphabet
of symbols as time progresses cannot be modelled by a Turing Ma-
chine, lineages of automata present a strictly more expressive class
of machines [25]. The notion of lineages where preceding transduc-
ers physically construct their successors have been explored and are
referred to as autopoietic automata [27], though their computational
expressiveness derives entirely from the notion of lineages.

4 BOUNDARIES OF COMPUTING
Concurrency is a central notion in interactive computing. In the sim-
plest sense, the environment and the automaton are processing in par-
allel and their behaviour is mutually coupled through the input and
output ports of the automaton. However, as more automata are in-
cluded within the environment, more parallel, semi-enclosed systems
are available for direct or indirect interaction. Further, each automa-
ton itself may be a multi-scale system, with high-level operations
delegating to lower-level components for execution details (such as
is explicitly described by the λ-calculus). Thus, this entanglement
of semi-decoupled interactive dynamical systems begins to resem-
ble discrete-time versions of natural physical processes. In fact, any
physical process could be described as an interactive computer, given
the Coupling and Persistence properties of interactive computing.

In fact, a school of thought called pancomputationalism would ar-
gue that all physical processes are intrinsically computing. This idea
suggests that the laws of physics are computational rules which are
processed continuously as time progresses, shifting the current state
of the universe to the next. However, this view devalues the concept
of computation and there might be more constructive ways to discuss
physical systems as computers. To begin this constructive discussion,
it is necessary to understand the boundaries of computing.

In his 1992 book, John Searle paraphrased this notion by saying
“For any object there is some description of that object such that un-
der that description the object is a digital computer” [21] and Jack
Copeland has referred to this as Searle’s Theorem4, for the sake of
argument [4] . Copeland rephrases this statement to clarify it, by say-
ing that any object, e, can be described by mapping its states by some
labelling, L, such that the pair < e,L > is a computer. Both Searle
and Copeland agree that under this definition, e is not intrinsically
computational but that it can be described as such with an appro-
priate selection of L. However, Copeland argues, not just any L is
valid.

In Searle’s initial statement, he went on to say that there existed
a description of a wall such that the wall was implementing a word
processor. Copeland shows that for this to be possible, L must be
time-sensitive and defined after the fact. In other words, a labelling
could be constructed to map the states of an observed history of the
wall to the states of a single observed computation of a word proces-
sor, but both sequences would have to be completely observed first
and the labelling would have to be applied afterwards. This means
that not only could L not be defined before the wall “executed” the
word processor program, once L was defined, it would only apply to
the wall at a specific set of time instances, and would be invalid at

4 Though Searle himself only states the theorem as an absurd logical exten-
sion of some of the contemporary theoretical computational discourse, it
serves as a concise statement of the central problem.



any other time or for any other run of the program. While < e,L >
could be called a computer implementing a word processor in this
case, Copeland argues that L constitutes a “non-standard” descrip-
tion of the wall. Alternatively, he argues that only so-called “honest”
descriptions ought to be valid for < e,L > to form a valid computer.

The crux of Copeland’s argument lies in the dynamics and seman-
tics of e and L. He argues that for the description of a wall to describe
a computer implementing a word processor, L would contain all of
the computational power, in other words, all of the dynamics and se-
mantics of the system; in fact, the wall could be swapped out for any
other object. He argues that an “honest” description of an object re-
quires that the majority (if not all) of the dynamics exist solely within
e. Meanwhile, L provides an arbitrary, time-invariant symbolic rep-
resentation of the states of e while respecting the natural dynamics
of e.

An element necessary to this discussion has merely been implied
thus far: for there to be a semantic description of an object, there
must be a subject doing the describing. If the semantics are not an
intrinsic part of a physical system, then they have to be bestowed
upon that system from somewhere else. This represents an instance
of an epistemic cut [17], where syntactic manipulation of symbols
by a dynamic process (for which the symbols have no meaning) pro-
duces meaningful information or performs a meaningful task for a
subject (by whom the symbols have their meaning bestowed). Even
a common digital computer is not a discrete symbolic machine, but
a severely constrained dynamical system in which states of certain
components are given specific meanings (eg. 5V stored in a flip-flop
may be interpreted as a binary 1, while 0V is interpreted as a binary
0). While there is a general question about how to bridge epistemic
cuts in nature [17], it is clear that in the case of practical computa-
tion, the physical system is constrained by human hands and given
meaning by human minds, such that when a human symbol is fed
to the physical system it will produce another human symbol, while
remaining oblivious to the meaning of its action.

In fact, another element of computation that is not discussed by
Searle or Copeland in this context is that of programming or algo-
rithms. While a dynamical process can have its states labelled to ex-
press a single computation (eg. a single pass through an algorithm),
there has been no discussion about how to generalize these dynamics
to multiple computations (ie. an algorithm run multiple times with
different inputs). For a dynamical system to be useful for compu-
tation, it must provide a number of degrees of freedom for placing
custom constraints upon the dynamics. Thus, even if a wall could be
honestly mapped to a computational process, it would still severely
restrict the types of tasks that could be computed. This implies that,
while any physical system might be described as a computer, not
every physical system is a generalized computer, and there will be
limits to that system’s computational expressiveness.

5 PHYSICAL SYSTEMS AS COMPUTERS

A wide variety of physical systems can be described as useful com-
putational platforms; systems that provide intrinsic and predictable
dynamics and a formalized approach to placing constraints on those
dynamics. Several examples of such systems will be explored in this
section, to demonstrate the flexibility of this framework for conceiv-
ing of computation.

First, one could consider the natural physical system of light and
occlusion, whereby opaque objects block light and cast shadows.
When appropriately constrained, this system can provide meaning-
ful computation through the shape and location of shadows. For in-

Figure 1. Two examples of natural computation. In A, a heated rock
cooling to ambient temperature is used to calculate a geometric curve

approaching an asymptote. In B, a sundial is used to compute time [22].

stance, a sundial positions a labelled face and a gnomon such that the
shadow cast by the gnomon’s edge aligns with the labels on the face
to indicate the time of day (Figure 5). In a sense, a sundial represents
a program for telling time on the platform of the physical system of
occlusion and celestial mechanics.

Similarly, non-opaque obstacles can be placed in the path of a ray
of light (such as a laser) to reflect, refract, and filter the light. Again,
these obstacles will act as constraints on the dynamical system of
optics and could be configured to perform meaningful computation.
For instance, a series of such obstacles could be arranged such that,
depending on the position of the light source, the ray is redirected
to one of two target faces, computing a decision problem where the
light position and the targets have semantic meaning.

A third example might be dropping a ball in the physical system
governed by gravity and collision mechanics. In this system, con-
straints may be physical obstacles which may be placed at various
positions and angles such that a dropped ball may tumble and bounce
along a path depended on the position from which it is released (not
unlike a pinball machine). If a mapping is devised between the ball’s
physical positions and some meaningful states of a computational
process, the physical obstacles could be configured to represent log-
ical conditions or other predicates.

Finally, the physical system could be that of electrical potential
energy, which drives electrons to flow through conductive materials.
Constraints can be placed on this system by redirecting or imped-
ing the current, as is done with wires and resistors. The currents can
also be manipulated with doped semi-conductors, such as transistors
and diodes. Since transistors are the building blocks of transistor-
transistor logic (TTL) which yields logic gates (AND gates, OR
gates, NOT gates, etc) and ultimately flip-flops, there can be no doubt
that the constraints on this system ultimately yield a computational
platform.

6 ABSTRACT COMPUTATIONAL PLATFORMS

The above examples have demonstrated a variety of physical sys-
tems that can provide varying degrees of general computation. The
computational expressiveness of each system relies heavily on the
degrees of freedom for setting constraints on the intrinsic dynam-
ics. The key to computing with each of these dynamical systems is
to place constraints on the dynamics such that the states of the sys-
tem can support an honest semantic mapping. For instance, the con-
straints on electrical potential to produce logic gates are specifically
designed to support the semantic mapping of predicate logic. Dig-
ital computers are so valuable because of the breadth of what can



be expressed in predicate logic, though even predicate logic has its
limitations.

Observing the above physical systems, some generalization may
be drawn for defining the characteristics of an abstract computa-
tional platform. First, such a platform must have its own intrinsic
dynamics. As in the above examples, these dynamics can be those of
the physical world, but they do not have to be. For instance, the dy-
namics of a Turing Machine are not natural, though they are intrinsic
to the platform and are predictable.

Second, such a platform must provide customization of constraints
on its dynamics (Figure 2). Essentially, this provides a way to “pro-
gram” on the platform, redirecting the dynamics to perform some
meaningful computation. In other words, it is this property of a
computational platform that allows a programmer to map dynamical
states to semantic values and place constraints to process the seman-
tics. In the case of a Turing Machine, this is afforded by the design
of the machine’s configurations and the instruction table.

Figure 2. Abstract platforms of computation. In A, the dynamics of some
flowing system is constrained to manipulate the quantity of fluid on the left
hand side. This quantity is reinterpreted in B, into a real-valued number, and

constrained again through discrete quantization. This discrete number is
represeted in C as an integer value. Ultimately, a simple equation controls

the constraints in A and B to produce the semantic outcome of the equation.

A natural result of these two characteristics is that the dynamics
and the degrees of freedom on customization limit the computational
expressiveness of a platform. For instance, the light-and-occlusion
system might be able to compute more than time of day, but may not
be as expressive as a Turing Machine. Thus, while there may exist
systems with severely limited computational expressiveness (such as
Searle’s wall or a heated rock cooling to the ambient temperature),
even these systems may serve as platforms for some few computa-
tional tasks.

Another result of this definition of a computation platform is that
it naturally gives rise to the concept of layers of abstraction (Figure
3). Each computational platform exists as a single layer of abstraction
and is capable of supporting computation for another layer (eg. a dig-
ital computer supports an operating system which, in turn, supports
a web server). Saying that a computational platform is “computing”
does not stipulate what is being computed. Thus, for every platform,

there requires some observer to remap its states and place constraints
to establish some semantic meaning of the dynamics before compu-
tation can occur. However, this observer need not be a human, but
could, instead be another machine, or even another computational
layer.

Digital computers represent several, layered, computational plat-
forms before the first line of software is even available. Semi-
conductors are arranged to constrain the natural dynamics of electric-
ity to emulate logic functions. These logic gates are then arranged as
flip-flops which can store one of two stable voltage states. Here, the
first layer reinterprets the flow of electrical current (and the state of
the electrical potential across the circuit) as logical predicates. The
second layer reinterprets the combination of logical predicates into
binary values. While this might appear to represent a system with a
discrete time step and a discrete state space, it is in fact a constrained
continuous system, with each layer of constraints introducing new
semantics on the previous layer. Likewise, while a register of 8 flip-
flops can store up to 8 binary digits and these digits can have numeri-
cal meaning to a human, this semantic meaning is not intrinsic to the
register. This same trend continues upwards through the arithmetic-
logic unit and the instruction pipeline. Thus, at every layer, the states
of the previous layer are remapped with new semantics (eg. voltage
→ binary → letters → stories).

Figure 3. Abstract computational platforms can be layered, each
reinterpreting and constraining the states and dynamics of the lower layers.
However, the reinterpretation must be a static mapping and the constraints

must be afforded by the underlying dynamics, such that not all platforms are
suitable for all tasks.

However, computational layers are abstract concepts. While they
have an intrinsic dynamics, those dynamics need not be natural or
even deterministic. Also, for computational platforms to accommo-
date layering, a platform must have some notion of what is required
for another platform to support it. For instance, a Turing Machine’s
dynamics can be described as follows:

1. Look up entry in instruction table for current configuration and
current tape symbol

2. Change configuration, modify tape symbol, move tape depending
on the entry in the table

Also, a Turing Machine provides to the programmer the following
operations:

• Read/write tape
• Move tape left/right
• Read configuration
• Change configuration



For a TM program to run, these operations must be guaranteed by
the platform. For a platform to support a TM, it would have to pro-
vide the ability to change and read the configuration of the machine,
and store and manipulate information that can be represented as a
linear symbol tape of arbitrary length.

7 FORMAL CONSTRAINT LANGUAGE
Under the definition of computers as layers of abstract computational
platforms, programs are described by a collection of specific con-
straints placed upon the dynamics of the underlying platform. To
match the generality of this framework, it would be ideal if there
were a formal, platform independent constraint description language
(CDL) which could be used to describe constraints on any platform
using the elementary operations provided by that platform. Such a
language would have to operate at the natural level of abstraction of
whichever computational platform it is currently targeting, describ-
ing input, output, and all constraints in a natural way for that plat-
form. Further, the language should be flexible to the wide potential
diversity in implementations, including interaction rules.

7.1 Abstract State Machines
Seeking a formalism for modern software, Gurevich et al have cre-
ated Abstract State Machines (ASMs) [8] to be a high-level concep-
tual model which expresses algorithms and other, non-algorithmic
programs at their native level of abstraction. One such ramification
of this idea is that data types and operations may all maintain their
semantic meanings, delegating the implementation details to a lower
layer of abstraction. The abstract layering approach to ASMs natu-
rally fits with the notion of computational layers and thus may pro-
vide the basis of an ideal CDL.

Briefly, an ASM defines the state of the system at any time as
a structure or group (in the abstract algebra sense) which contains
all of the values and potential operations that may be performed on
those values. Then, each step of the ASM transforms the state based
on which of the operations is valid at each step, performing every
valid operation in parallel. To more intuitively grasp the functioning
of an ASM, it can be expressed as a set of conditional assignment
statements. Each step, every statement is evaluated in parallel and,
where the conditions are met, assignments take place to modify the
values stored by the system state. To preserve the level of abstrac-
tion of the procedure, implementation details are often replaced by
semantically named functions, as is regularly done in object-oriented
programming, which become the elementary operations of the pro-
gram. The intuition is that each of these sub-functions might be de-
scribed by an ASM at their native level of abstraction, recursively
expressing more implementation detail.

7.2 Interactive ASMs
While ASMs are not intrinsically interactive, they can include inter-
action through their abstracted function calls. In the ASM literature,
two types of interaction are defined: inter- and intra-step [8, 2]. In
inter-step interaction, input is injected into the state of the computer
between computational steps. This can be viewed as the environment
modifying the state of the computer, an idea that is undesirable in
both ASMs and software engineering. The alternative is for the com-
puter to specifically request and then receive input, deliberately in-
verting the input-output sequence and giving the computer control
of the interaction. In interactive ASMs, all interaction (synchronous

or asynchronous) is performed through intra-step queries, in which
querying the environment (or another agent in the environment) re-
places the standard output stream of an interactive automaton and
the environment’s response replaces the input stream. This querying
semantics is reminiscent of Turing’s Choice Machines, which could
pause to request further input from a user.

The distinction between inter- and intra-step interaction is one
largely of perception, as it depends on where one draws the bound-
ary between the environment and the embodiment of the computing
agent. For instance, if one considers the sensor buffer of a robot to
be external to a program that the robot is running, then the program
must deliberately fetch any data that is waiting there. However, the
sensor buffer is a physical component of the same robot that is run-
ning the program and, by taking this slightly larger view of the sys-
tem, it might appear that the environment is writing data directly to
the robot’s computational state. While any instance of inter-step in-
teraction can be inverted by shrinking the program definition in some
way to exclude the input ports that are directly coupled with the ex-
ternal environment, this also blurs the line between the automaton
and its surroundings. As ASMs directly discuss levels of abstraction,
this should not necessarily be a problem, as it can be argued, follow-
ing the previous example, that the robot’s physical body occupies a
different abstraction layer from its “mind”. Another way of consider-
ing the coupling is that the robot’s body is a part of the environment
and is interacted with by the robot’s programming.

Ultimately, since the difference between intra- and inter-step inter-
action is largely a matter of perspective, and inter-step interaction can
be performed by an Interactive Machine, there is no reason to suspect
that ASMs cannot be purely mechanical. Thus, the interactiveness of
ASMs is as expressive as that of Van Leeuwen and Wiedermann’s
IMs.

7.3 Continuous Time ASMs

There is, however, one feature of ASMs that bares some considera-
tion for their selection as a formal CDF: the discrete time step. While
continuous values might be adequately represented by the symbolic
abstraction (in the same way as mathematics represents real num-
bers), ASMs operate in discrete time steps. However, one could con-
ceive of a continuous time ASM, in which each parallel operation
occurs in continuous time, though the properties of such a construc-
tion would have to be further explored. If ASMs could be adapted
to model constraints on continuous time, concurrent, interactive dy-
namics, it would likely provide a satisfactory description language
for constraints on any computational platform.

8 CONCLUSION

Computation has evolved greatly since the formulation of the Turing
Machine in 1936. Many computational paradigms have been envi-
sioned that reach beyond the limitations of the original conception,
though, many of these must remain as abstract concepts owing to
their inclusion of concepts of infinity. Other paradigms, which are
represented ubiquitously in operating systems, word processors, and
other embedded or interactive software, also supercede Turing Ma-
chine expressiveness. With the repetitive relaxing of the definition of
computing, some have come to speculate that all of physics is inher-
ently computational. Aiming to reserve the term “computation” for a
special subset of dynamics, this paper has defined computation with
a framework of abstract computational platforms.



Computational platforms provide a constructive and unified way
to express the computational nature of any natural or abstract dy-
namical system. It has been argued that any dynamical system can
be described as a computer, but every dynamical system has natu-
ral restrictions to how constraints can be placed upon its dynamics
so as to accomplish meaningful computational tasks. Computation
then exists as these constrained dynamics. Under this description a
wall could not execute a word processor, but a light-occlusion based
system could compute time.

The framework of computational platforms seeks to describe a
computational system as a dynamical system, whose states maybe
acquire semantic meaning and whose dynamics may be constrained
to uphold those semantics. Technically, any dynamical system can
be described as such, but the degree to which the constraints can
be placed are dependent on each system. With less flexibility on the
constraints comes less computational expressiveness.

The final requirement for this approach is to formalize a language
for describing constraints for any arbitrary computational platform.
It has been shown here that perhaps Abstract State Machines could
serve as a useful direction, provided that a continuous time version is
feasible. Further insight might be gained by exploring related mod-
els of concurrent computation, including the Actor Model [10] and
Interaction Nets [11].

Ultimately, this approach aims to incorporate all conventional
computing paradigms, including Turing Machines, Interactive Com-
puting, which have been discussed here, as well as many less con-
ventional paradigms. In particular, this approach seeks to include
distributed computing paradigms (for instance, artificial neural net-
works [20] and Stochastic Diffusion Search [1]), each interacting
with the environment and/or each other. Each of these swarms could
be seen as a computational platform with intrinsic dynamics. While
each swarm agent might be considered as a lower computational
layer, constraints can be described on the swarm as a whole by mod-
ifying the content or protocol of their communications. By allowing
this framework to describe populations of interacting processes, a
bridge might be build to constructively discussing the computational
capacity of the brain.

The work presented here parallels the framework for computating
and information processsing discussed in [18], but with a specific
emphasis on incorporating distributed, continuous, interactive, and
reflective systems. Further, the work presented here views semantic
mappings as crucial for distinguishing computation from other phys-
ical processes.

As much as this approach aims to include all dynamical systems
under the aegis of computing, it also aims to position these systems
such that their computational expressiveness is understood to be lim-
ited. While all physical systems could be said to support computa-
tion, they are not themselves computational nor are they all capable
of expressing the same class of programs. Also, abstract dynamics
can be said to support computation, and their computational capac-
ity can be understood alongside their natural counterparts. With such
broad applicability, hopefully, the framework of computational plat-
forms will help to constructively focus the future discourse of com-
puting.

9 ACKNOWLEDGEMENTS

The authors would like to convey their gratitude to the John Tem-
pleton Foundation for providing the funding for this work and to the
anonymous reviewers for their helpful comments.

REFERENCES
[1] J M Bishop, ‘Stochastic Searching Networks’, in Artificial Neural Net-

works, 1989., First IEE International Conference on (Conf. Publ. No.
313), pp. 329–331, (1989).

[2] Andreas Blass and Y Gurevich, ‘Ordinary interactive small-step al-
gorithms, I’, ACM Transactions on Computational Logic (TOCL),
V(July), 1–55, (2006).

[3] Alonzo Church, ‘An unsolvable problem of elementary number theory’,
American journal of mathematics, 58(2), 345–363, (1936).

[4] BJ Copeland, ‘What is computation?’, Synthese, (1996).
[5] Gordana Dodig-Crnkovic, ‘Significance of Models of Computation,

from Turing Model to Natural Computation’, Minds and Machines,
21(2), 301–322, (2011).

[6] Dina Goldin and Peter Wegner, ‘The interactive nature of computing:
Refuting the strong ChurchTuring thesis’, Minds and Machines, 1–26,
(2008).

[7] Dina Q. Goldin, Scott A. Smolka, and Peter Wegner, ‘Turing ma-
chines, transition systems, and interaction’, Information and Compu-
tation, 194(2), 101–128, (2004).

[8] Yuri Gurevich, ‘Interactive algorithms 2005’, in Mathematical founda-
tions of computer science, pp. 26–38, (2005).

[9] Yuri Gurevich, ‘Foundational Analyses of Computation’, How the
World Computes, 264–275, (2012).

[10] C Hewitt, ‘Actor Model of Computation: Scalable Robust Information
Systems’, arXiv preprint arXiv:1008.1459, 1–32, (2012).

[11] Yves Lafont, ‘Interaction nets’, in Proceedings of the 17th ACM
SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pp. 95–108. ACM, (1989).

[12] Jan Van Leeuwen and Jı́rı́ Wiedermann, ‘On the power of interactive
computing’, Theoretical Computer Science: Exploring New Frontiers
of Theoretical Informatics, 14186(201), 619–623, (2000).

[13] Jan Van Leeuwen and Jı́rı́ Wiedermann, ‘A computational model of in-
teraction in embedded systems’, Computer Science, (January), (2001).

[14] Robin Milner, Joachim Parrow, and David Walker, ‘A calculus of mo-
bile processes, i’, Information and computation, 100, 1–40, (1992).

[15] Vincent C. Müller, ‘On the Possibilities of Hypercomputing Super-
tasks’, Minds and Machines, 21(1), 83–96, (2011).

[16] Aran Nayebi, ‘Plausible hypercomputability’, arXiv preprint arXiv, 1–
55, (2012).

[17] Howard H. Pattee, ‘The physics of symbols: bridging the epistemic cut’,
Biosystems, 60(1-3), 5–21, (2001).

[18] Gualtiero Piccinini and Andrea Scarantino, ‘Information processing,
computation, and cognition.’, Journal of biological physics, 37(1), 1–
38, (2011).

[19] Wolfgang Reisig, ‘Abstract state machines for the classroom’, Logics
of Specification Languages, 15–46, (2008).

[20] D.E. Rumelhart and J.L. Mcclelland, ‘Parallel distributed processing:
explorations in the microstructure of cognition. Volume 1. Founda-
tions’, (January 1986).

[21] John R. Searle, The Rediscovery of the Mind, MIT Press, 1992.
[22] SEWilco. Garden sundial mn 2007. Creative Commons Attribution-

Share Alike 3.0.
[23] A. Turing, ‘On computable numbers, with an application to the

Entscheidungsproblem (1936)’, B. Jack Copeland, 58, (2004).
[24] J van Leeuwen and Jı́rı́ Wiedermann, ‘On algorithms and interaction’,

Mathematical Foundations of Computer Science 2000, 99–113, (2000).
[25] Peter Verbaan, J van Leeuwen, and Jı́rı́ Wiedermann, ‘Lineages of au-

tomata’, UU-CS, (2004).
[26] Peter Wegner, ‘Interactive foundations of computing’, Theoretical com-

puter science, 3975(97), (1998).
[27] Jı́rı́ Wiedermann, ‘Autopoietic automata: Complexity issues in

offspring-producing evolving processes’, Theoretical Computer Sci-
ence, 383(2-3), 260–269, (2007).


