635 research outputs found

    Perspectives on Human Genetic Variation from the HapMap Project

    Get PDF
    The completion of the International HapMap Project marks the start of a new phase in human genetics. The aim of the project was to provide a resource that facilitates the design of efficient genome-wide association studies, through characterising patterns of genetic variation and linkage disequilibrium in a sample of 270 individuals across four geographical populations. In total, over one million SNPs have been typed across these genomes, providing an unprecedented view of human genetic diversity. In this review we focus on what the HapMap project has taught us about the structure of human genetic variation and the fundamental molecular and evolutionary processes that shape it

    Bayesian meta-analysis across genome-wide association studies of diverse phenotypes

    Get PDF
    Genome-wide association studies (GWAS) are a powerful tool for understanding the genetic basis of diseases and traits, but most studies have been conducted in isolation, with a focus on either a single or a set of closely related phenotypes. We describe MetABF, a simple Bayesian framework for performing integrative meta-analysis across multiple GWAS using summary statistics. The approach is applicable across a wide range of study designs and can increase the power by 50% compared with standard frequentist tests when only a subset of studies have a true effect. We demonstrate its utility in a meta-analysis of 20 diverse GWAS which were part of the Wellcome Trust Case Control Consortium 2. The novelty of the approach is its ability to explore, and assess the evidence for a range of possible true patterns of association across studies in a computationally efficient framework.Peer reviewe

    Progress and promise in understanding the genetic basis of common diseases

    Get PDF
    Susceptibility to common human diseases is influenced by both genetic and environmental factors. The explosive growth of genetic data, and the knowledge that it is generating, are transforming our biological understanding of these diseases. In this review, we describe the technological and analytical advances that have enabled genome-wide association studies to be successful in identifying a large number of genetic variants robustly associated with common disease. We examine the biological insights that these genetic associations are beginning to produce, from functional mechanisms involving individual genes to biological pathways linking associated genes, and the identification of functional annotations, some of which are cell-type-specific, enriched in disease associations. Although most efforts have focused on identifying and interpreting genetic variants that are irrefutably associated with disease, it is increasingly clear that—even at large sample sizes—these represent only the tip of the iceberg of genetic signal, motivating polygenic analyses that consider the effects of genetic variants throughout the genome, including modest effects that are not individually statistically significant. As data from an increasingly large number of diseases and traits are analysed, pleiotropic effects (defined as genetic loci affecting multiple phenotypes) can help integrate our biological understanding. Looking forward, the next generation of population-scale data resources, linking genomic information with health outcomes, will lead to another step-change in our ability to understand, and treat, common diseases

    FINEMAP : efficient variable selection using summary data from genome-wide association studies

    Get PDF
    Motivation: The goal of fine-mapping in genomic regions associated with complex diseases and traits is to identify causal variants that point to molecular mechanisms behind the associations. Recent fine-mapping methods using summary data from genome-wide association studies rely on exhaustive search through all possible causal configurations, which is computationally expensive. Results: We introduce FINEMAP, a software package to efficiently explore a set of the most important causal configurations of the region via a shotgun stochastic search algorithm. We show that FINEMAP produces accurate results in a fraction of processing time of existing approaches and is therefore a promising tool for analyzing growing amounts of data produced in genome-wide association studies and emerging sequencing projects.Peer reviewe

    Evolution in Board Chair-CEO Relationships: A Negotiated Order Perspective

    Get PDF
    The relationship between chairs and chief executive officers (CEOs) has been largely neglected in research on nonprofit governance. Yet, a growing body of research on corporate governance in the private and public sectors suggests that this relationship is crucial both to the effective functioning of the board and the leadership of the organization. Much of the research on chair–CEO relationships has used cross-sectional research designs ignoring the fact that these relationships will evolve over time. This article responds to some of these challenges. It presents the results from longitudinal research examining the relationship between the chair and chief executive in a nonprofit organization. It shows how this relationship is “negotiated” and develops over time in response to contextual changes

    The Influence of Recombination on Human Genetic Diversity

    Get PDF
    In humans, the rate of recombination, as measured on the megabase scale, is positively associated with the level of genetic variation, as measured at the genic scale. Despite considerable debate, it is not clear whether these factors are causally linked or, if they are, whether this is driven by the repeated action of adaptive evolution or molecular processes such as double-strand break formation and mismatch repair. We introduce three innovations to the analysis of recombination and diversity: fine-scale genetic maps estimated from genotype experiments that identify recombination hotspots at the kilobase scale, analysis of an entire human chromosome, and the use of wavelet techniques to identify correlations acting at different scales. We show that recombination influences genetic diversity only at the level of recombination hotspots. Hotspots are also associated with local increases in GC content and the relative frequency of GC-increasing mutations but have no effect on substitution rates. Broad-scale association between recombination and diversity is explained through covariance of both factors with base composition. To our knowledge, these results are the first evidence of a direct and local influence of recombination hotspots on genetic variation and the fate of individual mutations. However, that hotspots have no influence on substitution rates suggests that they are too ephemeral on an evolutionary time scale to have a strong influence on broader scale patterns of base composition and long-term molecular evolution

    Towards a consensus around standards for smartphone apps and digital mental health

    Get PDF
    Mental disorders impact one in four people worldwide, yet access to care is challenging for those who suffer from them1. Mental health apps offer the potential to overcome access barriers for the nearly three billion people projected to own a smartphone by 2020. Although there are over 10,000 mental health apps commercially available, there are few resources available to help end users (patients, clinicians and health care organizations) to evaluate the quality and suitability of these products. Thus, there is an urgent need for an agreement about appropriate standards, principles and practices in research and evaluation of these tools.We represent leaders in mHealth research, industry and health care systems from around the globe, and we seek here to promote consensus on implementing these standards and principles for the evaluation of mental health apps. At a minimum, standards should include consideration of: a) data safety and privacy, b) effectiveness, c) user experience/adherence, d) data integration. Our consensus on the challenges and recommendations in each of these areas is presented below

    An in vitro assay to measure antibody-mediated inhibition of P. berghei sporozoite invasion against P. falciparum antigens.

    Get PDF
    A large research effort is currently underway to find an effective and affordable malaria vaccine. Tools that enable the rapid evaluation of protective immune responses are essential to vaccine development as they can provide selection criteria to rank order vaccine candidates. In this study we have revisited the Inhibition of Sporozoite Invasion (ISI) assay to assess the ability of antibodies to inhibit sporozoite infection of hepatocytes. By using GFP expressing sporozoites of the rodent parasite P. berghei we are able to robustly quantify parasite infection of hepatocyte cell lines by flow cytometry. In conjunction with recently produced transgenic P. berghei parasites that express P. falciparum sporozoite antigens, we have been able to use this assay to measure antibody mediated inhibition of sporozoite invasion against one of the lead malaria antigens P. falciparum CSP. By combining chimeric rodent parasites expressing P. falciparum antigens and a flow cytometric readout of infection, we are able to robustly assess vaccine-induced antibodies, from mice, rhesus macaques and human clinical trials, for their functional ability to block sporozoite invasion of hepatocytes

    From cheek swabs to consensus sequences : an A to Z protocol for high-throughput DNA sequencing of complete human mitochondrial genomes

    Get PDF
    Background: Next-generation DNA sequencing (NGS) technologies have made huge impacts in many fields of biological research, but especially in evolutionary biology. One area where NGS has shown potential is for high-throughput sequencing of complete mtDNA genomes (of humans and other animals). Despite the increasing use of NGS technologies and a better appreciation of their importance in answering biological questions, there remain significant obstacles to the successful implementation of NGS-based projects, especially for new users. Results: Here we present an ‘A to Z’ protocol for obtaining complete human mitochondrial (mtDNA) genomes – from DNA extraction to consensus sequence. Although designed for use on humans, this protocol could also be used to sequence small, organellar genomes from other species, and also nuclear loci. This protocol includes DNA extraction, PCR amplification, fragmentation of PCR products, barcoding of fragments, sequencing using the 454 GS FLX platform, and a complete bioinformatics pipeline (primer removal, reference-based mapping, output of coverage plots and SNP calling). Conclusions: All steps in this protocol are designed to be straightforward to implement, especially for researchers who are undertaking next-generation sequencing for the first time. The molecular steps are scalable to large numbers (hundreds) of individuals and all steps post-DNA extraction can be carried out in 96-well plate format. Also, the protocol has been assembled so that individual ‘modules’ can be swapped out to suit available resources
    corecore