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Abstract

Genome‐wide association studies (GWAS) are a powerful tool for under-

standing the genetic basis of diseases and traits, but most studies have been

conducted in isolation, with a focus on either a single or a set of closely related

phenotypes. We describe MetABF, a simple Bayesian framework for performing

integrative meta‐analysis across multiple GWAS using summary statistics. The

approach is applicable across a wide range of study designs and can increase the

power by 50% compared with standard frequentist tests when only a subset of

studies have a true effect. We demonstrate its utility in a meta‐analysis of 20

diverse GWAS which were part of the Wellcome Trust Case Control

Consortium 2. The novelty of the approach is its ability to explore, and assess

the evidence for a range of possible true patterns of association across studies in

a computationally efficient framework.
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1 | INTRODUCTION

In the past decade, a large number of genome‐wide
association studies (GWAS) have been performed, and they
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have identified thousands of associations between genotypes
and various biological traits (Hindorff et al., n.d.). These
associations expand our understanding of both unique and
shared molecular mechanisms across different phenotypes
(Price et al., 2015). With so much data available, there is now
an increased interest in combining data sets to learn about
regions of the genome that affect multiple traits and,
consequently, the shared biological pathways that under-
lie them.

While the search for genetic associations shared
between traits can be conducted using individual‐level
genotype data from the participating GWAS (Ellinghaus
et al., 2016), in practice, most of the readily available data
come in the form of summary statistics. While the exact
summary statistics reported vary from study to study,
they usually include information about the genetic
variant (usually a single‐nucleotide polymorphism
[SNP]) and its estimated effect on the phenotype under
study. Information about the variant usually includes its
genomic location in a given build of the human genome,
as well as its alleles, and sometimes the frequencies of the
alleles. Information about the association often includes
the effect size estimate, its standard error or a 95%
confidence interval, and the p value of the association
between the variant and the phenotype. The summary
statistic information typically comes in files that are
orders of magnitude smaller than the original genotype
data files, and reduce the risk of revealing personal
information about study participants.

As a result of their availability, a number of methods
have been introduced to combine GWAS summary
statistics to find genetic loci that influence multiple traits
across the genome (Bhattacharjee et al., 2012; Cotsapas
et al., 2011; Flutre et al., 2013; Majumdar et al., 2018;
Turley et al., 2018; Wen & Stephens, 2014a). These meta‐
analyses can also find novel associations that were
overlooked in individual GWAS.

In this paper we introduce MetABF, an approach to
meta‐analyse GWAS summary statistics at a single SNP
which is simple, efficient, and which can be easily
programmed using any standard statistical package—we
offer an implementation in R. We have found similar
methods to be useful in previous studies (Band et al.,
2013; Bellenguez et al., 2012; Gilchrist et al., 2018;
Rautanen et al., 2016) and present a unified framework
for others to use to explore their data. Unlike most other
methods available, ours allows for a direct probabilistic
assessment of different models of association across
studies, given appropriate prior assumptions. We demon-
strate the broad applicability of the approach using
simulations of association studies, and by applying it to a
diverse set of 20 GWAS that were performed by the
Wellcome Trust Case Control Consortium 2 (WTCCC2,

www.wtccc.org.uk). The R implementation is available at
https://github.com/trochet/metabf.

2 | THE METHOD

Traditionally, meta‐analyses of GWAS have focused on
combining results of multiple studies on the same or
similar traits. Figure 1 illustrates the inference problem.
Given a set of effect size estimates (β̂), and the
uncertainty in these estimates (SE β̂) what can we infer
about the true effect sizes, βi, underlying them?

Interpretation of the data depends on assumptions
about the heterogeneity in effect between studies. For
example, an assessment of the data might be that there is
little evidence from Studies 1, 2, and 3 because their
confidence intervals overlap zero. Even if we were to
assume that all studies estimate the same effect, the
inconsistency in observed effect sizes, in particular for β2
and β4, means that we are unlikely to find strong
evidence for a nonzero effect. However, if we knew that
the exact trait under examination in Studies 1 and 2 was
slightly different to those in 3 and 4 then the strong
evidence that β < 04 might suggest that β < 03 as well,
without necessarily suggesting the same for β1 and β2.
Our framework aims to make it easy to quantify the
statistical evidence for these kinds of heterogeneous
models and to provide the corresponding effect size
estimates.

FIGURE 1 Statement of the problem. Given a set of observed
effect sizes estimated from data in n = 4 studies, we want to make
inferences about the true effect sizes. Our joint estimate of the true
effects depends on our assumptions of the similarity between the
β̂is being estimated, for example, the similarity between traits being
studied. A key idea in our approach is to be able to easily assess the
evidence for models with various assumptions of similarity
between the studies
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2.1 | Bayesian approach

Our method uses a Bayesian approach that provides a
natural way of capturing the reasoning described above
for Figure 1 in a statistical framework. To measure the
evidence for association, we calculate Bayes factors,
which consider the ratio of the posterior probabilities of
two models M1 (an alternative model) and M0 (the null
model) given some data. By Bayes' Theorem,
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A Bayes factor >1 suggests that the evidence from the data
favors M1 over M0, while a Bayes factor <1 suggests the
opposite. Note that Bayes factors lie in the range ∞(0, ) but
when they are presented on a logarithmic scale, negative
values are also possible and correspond to the Bayes factors
favoring the null model. The interpretation of Bayes factors
in the context of GWAS has been discussed earlier (The
Wellcome Trust Case Control Consortium, 2007; Stephens
& Balding, 2009). Because Bayes factors calculate the
probability of the data under the null as well as under the
alternative model, they naturally account for power to
detect effects. In GWAS, this means that Bayes factors can
be easier to calibrate across varying study sizes and minor
allele frequencies than p values which only consider the tail
probabilities under the null model (Wakefield, 2009). Bayes
factors require a prior distribution on the model parameters
which can be used to describe different alternative models.

In practice, Bayes factors can be computationally
expensive to calculate as they commonly involve an
integration over the model parameters with respect to the
prior distribution. Often, there is no closed form solution of
the necessary integrals, necessitating numerical procedures.
In the context of GWAS, Jon Wakefield developed an
approximate Bayes factor (ABF) that can be calculated
directly from GWAS summary statistics (Wakefield, 2007,
2009). Asymptotically, it gives similar results to a Bayes
factor calculated using a Laplace approximation, and the
study sizes required for a good approximation are of the
order of hundreds of participants (Wakefield, 2009). Here
we describe our approach, using ABFs in GWAS (Wake-
field, 2007, 2009 ) which is similar to those applied
elsewhere (e.g., Asimit et al., 2015; Pickrell et al., 2016;
Wen & Stephens, 2014b). We compare our MetABF method
to two other methods CPBayes (Majumdar et al., 2018 ) and
MTAG (Turley et al., 2018 ).

2.2 | Statistical model

For each variant, a GWAS produces a point estimate, β̂,
of the effect of a given allele on a trait, typically adjusted

for relevant covariates like age, sex, or ethnicity. In
quantitative traits, β̂ represents the direct effect on the
phenotype measurement. In binary traits, β̂ estimates the
natural logarithm of the odds ratio (OR) corresponding to
each additional copy of the effect allele, that is, βexp( ˆ) is
the odds ratio estimate. Each β̂ comes with a standard
error, SE β̂, which is estimated along with β̂ and, in most
settings, is largely determined by the sample size and
variant frequency. Wakefield's ABF assumes that the
given SE β̂ and β̂ capture the information in the study data
about the true effect size, β such that

β βˆ~ ( , SE ).β̂
2� (2)

For the large sample sizes found in most GWAS,
Equation (2) is expected to be a reasonable approxima-
tion at all but rare variants (<1% frequency). Further
discussion of this can be found in section 3.1 of the
Supporting Information material.

Like all Bayesian methods, Wakefield's ABF includes
a prior distribution, which encodes our beliefs about the
true effect size β. The prior is determined by a single
scaling parameter σ that is set by the analyst

β σ~ (0, ).2� (3)

Large σ corresponds to a belief that true effect sizes can
be large, and analogously for small σ . Values commonly
used in the literature for disease studies are 0.2 and 0.4
(Marchini & Band, n.d.; Stephens & Balding, 2009). The
value σ = 0 encodes a belief that the variant has no effect
on the trait under investigation, and will be used as the
null model, M0 in our analysis.

For given β̂, SE β̂, and prior σ , let f x m s( ; , )2 be the
probability density function of the Gaussian distribution
with mean m and variance s2, evaluated at x. Then
Wakefield's ABF is simply

( )
( )

f β σ

f β
ABF =

ˆ; 0, SE +

ˆ; 0, SE
.

β

β

ˆ
2 2

ˆ
2

(4)

Because this is a ratio of normal densities, it has a closed
form expression that can be evaluated very quickly.

We note that the prior distribution on the true effect
size, β, shown in Equation (3), has most of its probability
mass close to zero, which is where the null model has all
of its mass. Thus, the Bayes factor in Equation (4) has a
minimum, nonzero value at β̂ = 0, while the maximum
value is unbounded. It will rarely provide strong evidence
in favor of the null (M0) as the alternative model includes
very small effects close to zero. Other nonlocal priors
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(where the prior density of the alternative model drops to
zero near zero), have been described (Johnson & Rossell,
2010 ). The lack of strong evidence in favor of the null
reflects the fact that, in the GWAS context, small effect
sizes are difficult to rule out. Furthermore, a GWAS
typically aims to identify SNPs that show strong evidence
(say, ABF > 1000) for an association with a trait, rather
than those that show strong evidence for no association.

2.3 | ABFs for meta‐analysis
We describe our multivariate extension of the ABF to
meta‐analysis. Instead of calculating an ABF for an
association between a given variant and a given trait
measured in one GWAS, we calculate an ABF for an
association between a variant and an arbitrary number of
traits, n, measured in independent or (partially) over-
lapping studies. Recently, multivariate analysis of GWAS
summary statistics has been implemented by the MTAG
approach (Turley et al., 2018 ) and a framework involving
Bayes factors to compare models of association has been
developed to help determine relevant tissues in eQTL
data (Flutre et al., 2013 ). When extending Wakefield's
ABF to the multivariate case, β̂, which was a single effect
size estimate from a single GWAS, becomes β̂, an n‐
vector of effect size estimates from each of the n studies
included in the meta‐analysis.

β β βˆ = ( ˆ , …, ˆ ) .n1
T

Similarly, SE β̂ is replaced by the study covariance matrix,
Vβ̂, of dimension n n×
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If the studies are all independent—that is, they do not
share samples—then the ri j, terms in Vβ̂ are all 0, and Vβ̂
is simply a diagonal matrix of study‐wise variances. If
studies are not independent, then some or all of the off‐
diagonal elements of Vβ̂ will be nonzero. If the amount of
overlap between studies is known, then the values of r
can be calculated from formulas provided by Zaykin and
Kozbur (2010) and Bhattacharjee et al. (2012).

However, having information on exactly which
samples were included in which consortia and analyses
is increasingly difficult, especially when dealing with
summary statistics, necessitating approaches that esti-
mate the covariance between studies directly from the

data. The authors of the MTAG approach (Turley et al.,
2018) used the intercept of the pairwise LD score
regression (B. K. Bulik‐Sullivan et al., 2015) to create an
analogous matrix. This can be applied to our method as
well. As we show later, it is also possible to get similar
estimates by simply calculating empirical correlations in
a chosen subset of β̂s between the two studies.

Next we consider a multivariate extension of σ , which
we call Σ. As in the univariate case, each study

∈i n{1, …, } has a prior parameter σi determining the
expected effect sizes. However, combining multiple
studies introduces the possibility of correlated true effects
between pairs of them, which we capture in the
terms ∈ρ i j n: , {1, …, }i j, .
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This matrix has a similar role as the Ω matrix in the
MTAG approach ( Turley et al., 2018 ). Thus, by writing

x m Vf ( ; , ) for the density of a multivariate normal
distribution with mean vector m and covariance matrix
V , evaluated at x , Equation (4) becomes

β 0 V

β 0 V

f

f

Σ
ABF =

( ˆ; , + )

( ˆ; , )
.β

β

ˆ

ˆ
(7)

2.4 | Choosing prior parameter values

Unlike Vβ̂, which is in theory can be defined by the data,
Σ reflects the prior beliefs of the researcher about the
similarity of the effects between studies. One of the most
common ways to meta‐analyze a set of GWAS summary
statistics is the inverse‐variance weighted fixed‐effects
model. This model assumes that the underlying true
effect of an associated variant is the same in all cohorts,
and the differences in the estimated effect sizes arise due
to statistical noise. Larger studies produce more accurate
estimates of the underlying true effect producing
estimators with smaller variances. Thus, weighting by
the inverse of the variance gives a larger study a greater
contribution to the meta‐analyzed estimate than a
smaller one. In our framework, this fixed‐effects model
is encoded by setting all the ρi j, terms of Σ = 1.

Another common meta‐analysis method is the ran-
dom‐effects model. This assumes heterogeneity in true
effect sizes across studies. There are many ways of
implementing this assumption, many of which have
inherently reduced power to detect effects compared to
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the fixed effects approach (Han & Eskin, 2011). Our
approach allows for a number of different priors that
account for heterogeneity in effects found in different
studies. They are summarized, along with the fixed‐
effects prior, in Table 1.

The prior models described above allow us to quantify
the evidence of association through an ABF in which the
alternative model can take a range of forms. The simplest
models assume that all studies draw their effects from the
same marginal distribution and are equally correlated
with one another, such that the prior can be specified
with just a single σ and a single ρ parameter. When
ρ < 1, the prior allows some studies to have large effects
while others can still have effects very close to zero since
the prior on β is always centered on zero. In this way, we
expect an ABF which assumes all studies have an effect
with ρ0 < < 1 to show evidence for the alternative
model, that is, ABF> 1, even when only a subset of the
studies have truly nonzero effects.

2.5 | Subset exhaustive model averaging

In the analysis of a diverse set of traits, it is natural to
consider the possibility that only a subset of studies have
nonzero effects (σ > 0i

2 ) while the rest are null (σ = 0i
2 ).

For n studies and fixed values of ρ and σ , there are 2n

possible subset models, including the null model of no
association. A natural Bayesian approach for detecting
associations under these assumptions is to apply model
averaging over the subset models to obtain a single
summary of the evidence for models of association
against the null model of no association. By storing the

ABF for each possible model, the analysis can also
generate the full posterior distribution. These analyses
require specifying a prior probability on each model.
When all studies are considered equally likely to have an
effect, then possible prior distributions include the
following categories:

1. Uniform prior: This assumes that every model of
association is equally likely, and thus has the prior
probability p of

p = 1
2

.n (8)

2. Combinatorial prior: When calculating the total prior
weight on the models with m associated traits out of
all possible n traits under the uniform prior, we see
that the models with n/2 traits (n/2+ 0.5 if n is odd)
have the largest prior weight since the number of
these models is the largest. The combinatorial prior
forces the prior weights on the number of associations
to be the same. That is, for a model with a total of m
associations, the prior probability p on the model is

p m n m
n

= !( − )!
( + 1)!

. (9)

3. Binomial prior: Both the uniform prior and the
combinatorial prior assume that a model with no
associations is equally likely as a model where all n
traits are associated. In reality, we might assume that

TABLE 1 Different models of association across studies and their relation to parameters of the prior model.

Variance of
effect size

Correlation in
effect sizes Notes

Null model σ = 02 – Assumes variant has no effect on the phenotype.

Fixed effects σ > 02 ρ = 1 Equivalent to first applying an inverse‐variance weighted

meta‐analysis to estimates β̂i and SE β̂i
, and then using these

estimates as a single study in Equation (4).

Independent effects σ > 02 ρ = 0 Equivalent to multiplying the single study ABFs across
studies, assuming the studies are independent. Similar to
Fisher's method of combining p values.

Correlated effects σ > 02 ρ0 < < 1 Similar to a related‐effects approach where the effects are
assumed to be correlated after being drawn from a common
distribution (see text).

Subset model σ > 0i
2 for i in a

subset ⊆I n{1, …, }

≤ ≤ρ0 1ij for ∈i j I, Models heterogeneous patterns of effects, where only a
subset of the underlying parameters are nonzero. May be
most appropriate to model as fixed, independent, or
correlated within the set of nonzero effects, depending on
the setting.

Note. σ and ρ are as defined in text and assumed to be the same across studies
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each of the studies has some probability
∈q i n: {1, …, }i of having a true association with a

variant. Alternatively, these qi can be thought of as the
proportion of SNPs with which the ith study is
expected to be associated. This is similar to π , the
prior on the expected proportion of true effects that
Stephens and Balding (2009) discuss for the calcula-
tion of the posterior probability of association. For a
given model with subset ⊆K n{1, …, } of studies
showing associations with the variant and subset

⧹L n K= {1, …, } showing no association, the prior
probability of the model is

∏ ∏
∈ ∈

p q q= (1 − ).
i K

i
j L

j (10)

The uniform prior can be recreated in this prior by setting
all q = 0.5i .

In general, we do not recommend using the combi-
natorial prior, as it places relatively high prior weight on
the null model or the model with all traits associated.
This becomes more pronounced as the number of studies
in the meta‐analysis, n, increases. This is because for all
values of n > 1, there is exactly one null model and one
model where all n traits are associated, while the number
of models with one to n − 1 associations increases with n,
so the prior weight on any one of these models decreases
with n, which also decreases their relative weights
compared with the null and n associated models.
Furthermore, in real world applications, it is unlikely
that one would have an a priori belief in the number of
true underlying associations while being completely
agnostic to which specific traits are associated.

The binomial prior provides a principled way of
upweighting particular subset models. Setting a low prior
probability on each trait (i.e., ∀ ∈q i n< 0.5, {1, …, }i )
increases the weight on models with fewer associations,
which might be appropriate if sharing of associations is
deemed unlikely a priori. Conversely, setting q > 0.5i
encodes a belief that associations are more likely, and for
any pair of studies with prior probabilities >0.5, sharing
of associations is assumed to be more likely than not. In
this way, assumptions about the expected level of
pleiotropy can be incorporated via the binomial prior.

By making use of the generality of the prior covariance
matrix Σ, a range of other models can be defined based on
particular assumptions on the relationship between
traits. Where it might be appropriate to assume that the
marginal effect at a variant is representative of the
genome average, the estimates of the genetic correlation
between two studies might be appropriate as prior
information, and it has been shown that this can increase
power in some scenarios (Turley et al., 2018).

In practice, for analyses of large numbers of studies,
we advocate selecting a relatively small set of prior
matrices which best represent possible models as a way to
overcome the exponentially growing model space and the
fact that prior probability on any one subset model
becomes smaller with as the number of studies increases.
The rationale is similar to the approach taken in the
analysis of eQTL data (Flutre et al., 2013). We can
average across all of the ABFs calculated under the
various priors to get a single quantity that accounts for
our uncertainty about the exact prior model.

It is also of interest to assess models in which effects
are assumed to be negatively correlated between some
pairs of studies. A challenge is that the number of
possible configurations of positive and negative associa-
tion grows even more quickly than the subset models.
Taking absolute values of the effect sizes changes the
sampling distribution to the folded‐Gaussian distribu-
tions which are difficult to work with. If negative
correlations are of interest, or should be entertained as
possible, then assuming independent effects (ρ = 0) is a
practical option, although with the cost of losing the
dependency information between the effect sizes.

2.5.1 | Shotgun stochastic search

If the number of studies in the meta‐analysis is so large that
an exhaustive search over all subset models is not feasible
for a given Σ, a shotgun stochastic search (SSS; Hans et al.,
2007) can be performed to determine the most likely
models of association. This iterative method calculates the
ABFs for the set of models in the “neighborhood” of the
current index model. This neighborhood contains models
that (a) add an association to the index model, (b) remove
an association from the index model, or (c) replace exactly
one nonzero study from the index model with one that is
zero in the index model. The algorithm then chooses the
next index model based on a probability distribution
generated from normalizing the ABFs of the models in
the neighborhood of the index model. This type of search
has been used to fine‐map genetic loci (Benner et al., 2016)
and is well‐suited to our ABF analysis, as it quickly finds
the models with high ABFs. In every scenario we have
investigated, in both real and simulated data, the distribu-
tion of ABFs has been unimodal, meaning that the search is
unlikely to miss the global maximum of the distribution
due to being caught in a local one.

2.6 | Posterior distribution of effect
sizes

Within the Bayesian framework described above, it is
natural to compute the posterior on the true effect sizes
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under different assumptions about the presence and size of
an effect within a study, and the correlation in effects across
studies. Often when describing the interpretation of a forest
plot, like that illustrated in Figure 1, the analyst informally
imposes these beliefs in drawing conclusions. It is, there-
fore, of interest to assess formally the impact of these beliefs
on our inference about the true effects.

Using standard results for the posterior distribution of
the mean given a multivariate normal likelihood and a
normal prior:

( )β V V β VΣ Σ~ ( + ) ( ˆ), ( + ) .β β β
−1

ˆ
−1 −1

ˆ
−1 −1

ˆ
−1 −1 � � �

(11)

A posterior forest plot can then be drawn with point
estimates based on the posterior mean, and with the
marginal variance on the posterior effect size taken from
the diagonal elements of the posterior variance‐covariance
matrix. The impact of the prior matrices described above on
the posterior forest plot typically includes: shrinkage of
effects towards zero, when they are believed to be nonzero;
increased certainty in the effect size estimates of two studies
with similar effects when they are assumed to be correlated,
with the certainty at its maximum when the studies are
independent; and increased uncertainty in true effects which
are assumed to be correlated when the observed effects differ
significantly. We note that it would be possible model
average the posterior distribution over models by numeric
evaluation. In this case, the marginal posterior distribution of
effect size within a study is no longer necessarily unimodal.

3 | RESULTS

3.1 | Simulations and statistical
properties

To understand the statistical properties of our method
compared to standard approaches to meta‐analysis, we

performed simulations of five independent GWAS at a
single variant. We found that, assuming sample sizes are
moderate (>1,000 individuals) and allele frequencies not
too rare (>0.01), it was possible to simulate effect sizes
and standard errors directly from the the model described
above, where true effects can either be fixed at a given
value, or sampled from a prior distribution (see the
Supporting Information Material 6.3). The ability to
efficiently simulate directly from the approximate model
is useful for assessing frequentist properties of the
Bayesian approach.

As an illustrative example, Figure 2 shows the
estimated power of a standard inverse‐variance weighted
fixed effects meta‐analysis approach and Fisher's method
of combining p values, as well the power of a MetABF
which assumes that all studies have an effect. Results are
shown for MetABFs that assume effects are uncorrelated
(ρ = 0), or highly correlated (ρ = 0.96). The MetABF
with highly correlated effects performs well when there is
an effect in all five studies, although not quite as well as
the fixed effects approach when the fixed effects
assumption is correct. However it has substantially more
power when only a subset of studies—for example, 2 of
5—have an effect in which case the highly correlated
MetABF has 50% more power than the fixed effects
approach.

We used simulations under the null to estimate p
values for the ABF using priors which assumed effects
were present in all five studies (as in Figure 2), and the
MetABF model that explicitly averages over all possible
subsets of true effects. We note that when the ABF is
based on a single variance‐covariance matrix for the
prior, that is, it is not model averaged, then it is possible
to derive the distribution of ABFs under the null, given a
frequentist test statistic (see the Supporting Information
Material 6.4). We performed simulations under a range of
different subset effects with different priors on effect sizes
and correlations and compare statistical power to the two
frequentist methods described above as well as a random

FIGURE 2 Plot of power for two
frequentist test and the ABF with two
different prior parameter settings for the
assumed correlation between studies (ρ).
Simulation were performed with a true
effect (odds ratio = 1.1) present in a subset
(y‐axis) of five studies with 1,500 cases
and 1,500 controls. Power was calculated
using a significance threshold α = 0.01.
ABFs were calculated with σ = 0.2. ABF:
approximate Bayes factor Number of truly associated traits
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effects approach with a closed form calculation (DerSi-
monian & Laird, 1986; see figure 8 in the Supporting
Information Material).

Briefly, we found that the MetABF approach was
similar in power to the best frequentist tests, was more
powerful when a subset of the traits in the meta‐analysis
were truly associated. Of the three alternative approaches
we tested, Fisher's method came closest in terms of
power with the Bayes factor approaches when there are
three or more studies with associations to find. We also
found that while the MetABF sometimes loses power
when the prior correlation on the true effects is different
from the true underlying correlation, the loss is not large
—the results of the MetABF analyses using different
values of ρ (but the same prior σ) tended to differ by less
than 0.005. This suggests that the MetABF approach is
fairly robust to the choice of prior ρ.

3.2 | Comparison to other methods

We compared our method to both CPBayes (Majumdar
et al., 2018) and MTAG (Turley et al., 2018) using simulated
data. Section 7 in the Supporting Information Material
provides a more detailed discussion of our findings. Briefly,
at any given false‐positive rate (proportion of spurious
associations in the posterior model), CPBayes had the
highest true positive (proportion of true associations in the
posterior model) rate of the three methods, while MetABF
and MTAG were very similar in performance. However,
neither MTAG nor CPBayes allow the user to explore the
posterior probability space the way MetABF does. Addi-
tionally, the gain in accuracy in CPBayes comes at a
considerable time cost. It took roughly 8min on average to
analyze a data set of 60,000 SNPs with MetABF, while
CPBayes took an average of 2.3 days when studies were
assumed to have no cryptic relatedness between them, and
an average of 6.6 days when they were not. Both CPBayes
and MetABF are implemented as R packages. MTAG,
which is implemented in Python, was by far the fastest
method, taking an average of 15 s on the full data; however,
this does not include the time taken to create the LD score
reference panels.

3.3 | Application to WTCCC2 data

To investigate the applicability of the approach across a
large number of heterogeneous GWAS, we applied it to
summary statistic data from the following Wellcome
Trust Case Control Consortium 2 (WTCCC2) studies.
These included

Autoimmune diseases: (1) ankylosing spondylitis (AS);
(2) multiple sclerosis, UK cohort (MS_UK); (3)

multiple sclerosis, non‐UK European cohort (MS_no-
nUK); (4) psoriasis (PS); (5) ulcerative colitis (UC).

Infectious diseases: (6) bacteremia, all types (BS_overall);
(7) pneumococcal bacteremia (BS_pneumococcus); (8)
visceral leishmaniasis, Indian cohort (VL_India); (9)
visceral leishmaniasis, Brazilian cohort (VL_Brazil).

Stroke cohorts: (10) ischemic stroke, large vessel subtype
(IS_TOAST_1); (11) ischemic stroke, small vessel
subtype (IS_TOAST_2); (12) ischemic stroke, cardi-
oembolic subtype (IS_TOAST_3).

Reading and mathematics cohort: (13) reading scores
(RM_reading); (14) mathematics scores (RM_maths).

Psychiatric traits: (15) schizophrenia (SP); (16) psychosis
endophenotypes (PE).

Studies of unique traits: (17) Parkinson's disease (PD);
(18) Barrett's esophagus (BO); (19) metformin response
(PR); (20) glaucoma (GL).

Studies were mainly conducted in European cohorts, but
two studies (BS and VL) used non‐Europeans samples.
Three different genotyping arrays were used, and four
studies were imputed to increase the number of SNPs in the
data set (see Tables S7 and S8 for details). As a result,
summary statistic data were typically available for only a
subset of studies at any given SNP. Our analysis included all
SNPs for which there were summary statistics in at least
two of the studies. Before performing our analysis we
harmonized the data using a pipeline to align the SNPs in
each study to the forward strand, thus ensuring that the “A”
and “B” alleles of each SNP were the same across all
studies, and corresponded to the reference/alternative
alleles in the 1,000 Genomes database. Effect sizes were
estimated for the alternative allele. Details about the
processing and availability of the data can be found in
Section 6.7.1 of the Supporting Information Material.

To search for signals of association we calculated a
model averaged ABF at each SNP across the genome. To
capture the range of possible patterns of association
across studies, we selected 12 models with different
assumptions about the correlation structure of effect sizes
among the studies. These are described in Section 3.4
below. We found that subset models that assumed an
effect only within one study (and explicitly no effect in
other studies) often had low probability, presumably
because conditional on one study showing a true effect,
the chance that no other study shows any effect becomes
increasingly small (particularly for related traits) as the
number of studies increases. We calculated the MetABF
for each of these models with different values of σ (0.1,
0.2, and 0.4). We then took the mean across all resulting
MetABFs, assuming them to be equally likely a priori, to
obtain a single summary of the association evidence
across all studies.
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3.4 | Prior matrices

Briefly, the 12 priors used in our analyses assume
nonzero effects across all studies. They differ in the
presumed correlation structure, ranging from completely
uncorrelated across all studies (Model 1), through to prior
matrices where correlated effects only occur within a
subset of studies (e.g., IS, MS, BS, and RM, Models 5–7)
or within study classes (e.g., autoimmune disease; AS, PS,
MS, and UC: Models 8–12). Figure 3 illustrates each of
the prior models used. The traits are listed in the order
described at the start of Section 3.3, grouped by disease/
trait class.

3.5 | Study matrix

Among the 20 WTCCC2 cohorts, nine of them used
samples from a shared pool of controls. Additionally, one
of the bacteremia (BS) cohorts was a subset of the other,

while the two reading and mathematics cohorts (RM)
comprised of two different phenotypes measured on the
same individuals. This introduced correlation in the
effect size estimates due to shared statistical noise, and
therefore nonzero covariance terms between some of the
studies in the V V= β̂ matrix (see Equation (5)), which
we needed to estimate (Table 2).

When estimating the correlation directly from the
genome‐wide β̂‐statistics, we used several approaches:
taking the intercept from LD score regression (LDSC; B.
Bulik‐Sullivan et al., 2015; B. K. Bulik‐Sullivan et al.,
2015; Turley et al., 2018), which provides an estimate of
trait covariance due to undetected shared controls; using
all the available data and empirical correlation of β̂‐
estimates over three subsets of the SNPs (all SNPs;
thinning out the SNPs by the recombination distance;
and removing SNPs that had significant associations with
p < 5 × 10−8 as well as those in the MHC region).
Broadly, the estimated correlations were similar across

1−
3

4−
6

7−
9

10
−1

2

FIGURE 3 Visualizations of the prior correlation matrices of WTCCC2 analyses. Dark red squares correspond to ρ = 1, red squares
correspond to ρ = 0.96, yellow‐orange squares correspond to ρ = 0.5, light yellow squares correspond to ρ = 0.1, and white squares
correspond to ρ = 0. The traits are listed in the order at the start of Section 3.3 and grouped by disease/trait class
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TABLE 2 Comparison of the 39 nonzero correlations calculated under the null between each pair of studies using different methods.

Trait 1 Trait 2 Signals removed Thinned All LDSC

AS BO 0.192 0.162 0.177 0.196

AS IS TOAST 1 0.097 0.0946 0.0932 0.0939

AS IS TOAST 2 0.0995 0.0892 0.0868 0.0998

AS IS TOAST 3 0.0885 0.0817 0.0804 0.096

AS MS UK 0.184 0.143 0.147 0.199

AS PD 0.198 0.185 0.169 0.206

AS PS 0.198 0.147 0.152 0.206

AS UC 0.213 0.203 0.209 0.225

BO IS TOAST 1 0.122 0.134 0.122 0.127

BO IS TOAST 2 0.133 0.162 0.132 0.135

BO IS TOAST 3 0.113 0.121 0.113 0.126

BO MS UK 0.229 0.199 0.226 0.241

BO PD 0.237 0.227 0.237 0.236

BO PS 0.284 0.277 0.273 0.294

BO UC 0.244 0.251 0.244 0.268

BS overall BS pneumo. 0.619 0.623 0.619 NA

IS TOAST 1 IS TOAST 2 0.121 0.133 0.120 0.127

IS TOAST 1 IS TOAST 3 0.169 0.175 0.168 0.164

IS TOAST 1 MS UK 0.115 0.098 0.111 0.118

IS TOAST 1 PD 0.111 0.118 0.111 0.110

IS TOAST 1 PS 0.129 0.119 0.124 0.127

IS TOAST 1 UC 0.114 0.112 0.115 NA

IS TOAST 2 IS TOAST 3 0.117 0.137 0.118 0.114

IS TOAST 2 MS UK 0.124 0.127 0.121 0.127

IS TOAST 2 PD 0.128 0.117 0.127 0.128

IS TOAST 2 PS 0.134 0.136 0.127 0.139

IS TOAST 2 UC 0.124 0.161 0.123 0.128

IS TOAST 3 MS UK 0.112 0.0866 0.11 0.116

IS TOAST 3 PD 0.112 0.102 0.112 0.104

IS TOAST 3 PS 0.113 0.108 0.107 0.122

IS TOAST 3 UC 0.109 0.131 0.109 NA

MS UK MS non‐UK 0.0529 0.132 0.0927 0.0191

MS UK PD 0.243 0.245 0.242 0.252

MS UK PS 0.243 0.218 0.222 0.254

MS UK UC 0.233 0.224 0.231 0.244

PD PS 0.249 0.269 0.237 0.253

PD UC 0.24 0.251 0.239 0.246

PS UC 0.257 0.247 0.240 0.271

RM reading RM maths 0.535 0.535 0.535 0.543

Note. Using the set of SNPs shared between the two phenotypes with genome‐wide significant SNPs and those in the MHC region removed (signals removed),
the set of SNPs shared between the two phenotypes, thinned so that all SNPs are at least 0.25 centiMorgans apart (Thinned), the set of all SNPs shared between
the two phenotypes (All), and the intercept of the genetic covariance calculated by LD Score regression (B. Bulik‐Sullivan et al., 2015; B. K. Bulik‐Sullivan et al.,
2015; LDSC).
LDSC: LD score regression; MHC: major histocompatibility complex; SNP: single‐nucleotide polymorphism
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approaches, however the removal of significant associa-
tions and the MHC region tended to increase the
estimated correlation, as did the LDSC analysis. These
observations suggest that strong association signals create
additional variance in the effect size estimates that can
reduce the correlation if not accounted for.

For the analysis that follows, we assumed
V r SE SE=i j p i j i p j p, , , , , , where i and j indexed the study
pairs and p indexed the SNP. Because LD score
regression was not able to run on all of our data, due to
small (<100,000) overlaps between the markers in
software's reference panels and the markers in some of
our cohorts, the pairwise correlations ri j, were based on
the genome‐wide correlations in β̂ estimated after the
removal of the MHC region and other significant
associations, and SEj p, were taken directly from the
original association analyses.

Due to simplicity of the multivariate normal approx-
imation, it is quick to simulate effect size estimates and
standard errors under the null for all 20 traits in our
analyses. Using these simulated data, we can calculate
ABFs under a range of models, across all traits, and
simultaneously account for the nonindependence of the
studies. It is then possible to check, via a quantile–
quantile comparison, whether the observed ABFs are
distributed as expected under the null at the majority of
SNPs, which would provide confidence that positive
ABFs represent evidence for genuine departures from the
null model, as opposed to being a systematically
miscalibrated test statistic. Supporting Information

Figure 13 shows the result of the simulations across the
genome for each of the 12 prior models. The resulting
quantiles are closely matched at the majority of SNPs
suggesting that the null model fits the data at the
majority of SNPs. As expected there is a deviation in the
tail, where the observed ABFs are bigger than expected,
suggesting the alternative model is a better explanation
for the data. We caution that in the analysis of genome‐
wide association data, these simulations do not account
for the correlation between SNPs due to linkage
disequilibrium.

3.6 | Genome‐wide analysis

The results of the genome‐wide analysis in Figure 4 show
the mean MetABF at each SNP across all 36 combina-
tions of 12 prior matrices and three values of σ
(σ = {0.1, 0.2, 0.4}), using the model that assumes an
association in every trait. Additionally, we curated two
lists: one of SNPs reported in each WTCCC2 publication
as being implicated by previous studies, and the other of
novel loci identified as genome‐wide significant (often
after replication) by each publication. These are given in
the Supporting Information Material (Tables S9 and S10).
Of the 35 previously identified associations, 18 had a
model averaged MetABF > 104 in our analysis.

For regions showing a strong evidence of association
(model averaged MetABF > 104) we further explored the
patterns of association, examining all possible subset
models across all 12 prior correlation matrices and three

FIGURE 4 MetABF analysis of genome‐wide association analysis across 20 WTCCC2 studies. Adjacent chromosomes are colored with
different shades of blue with SNPs of interest colored as denoted in the legend. The y‐axis has a threshold at 20. We highlight the markers
with the highest mean ABF in our analysis for each non‐MHC region with markers whose mean MetABFs were > 104. Yellow dots show
markers that had been established as loci associated with one or more of the WTCCC2 traits. Red dots highlight the SNPs with the highest
mean MetABF (for a given region) that show an association with at least one trait in the meta‐analysis, where the mean MetABF ≥ 104, and
which are not genome‐wide significant in any of the original WTCCC2 analyses. ABF: approximate Bayes factor; SNP: single‐nucleotide
polymorphism; WTCCC2: the Wellcome Trust Case Control Consortium 2
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values of prior effect size parameter σ . For markers with
information for at least 19 studies, we used a shotgun
stochastic search ( Hans et al., 2007) to avoid making all
219 or 220 calculations. Because of the large number of
possible models, and because we assumed each to be
equally likely a priori (uniform prior), this approach
imposes a strong prior belief in the models with an
intermediate number of nonzero effects. We show the
marginal probability of the study being included (aver-
aged across all possible subset models) and the most
likely model in Figure S14. Outside of the MHC region
(the strong peak of association on chromosome 6),
several loci stand out as potentially having effects across
a range of traits. To illustrate the impact of the MetABF
analysis on the interpretation of the pattern of association
we highlight three SNPs. The forest plots of the original
association summary statistics and the posterior distribu-
tion of effects under the most likely model are shown in
Figure 5. We discuss these illustrative examples below.

• SLC44A2 locus—rs8106664. The analysis highlights a
SNP near the gene SLC44A2 which shows a strong
association with MS, as well as associations with both
psoriasis and ischemic stroke. The SNP was not
identified in the 2011 multiple sclerosis analysis
(Sawcer et al., 2011) but is in strong LD (r = 0.93472

in 1,000 Genomes EUR populations) with a missense
variant that was subsequently confirmed (Beecham

et al., 2013). Its prominence in this analysis is driven by
the signals in other autoimmune diseases which boost
the signal in MS and increases the confidence in the
effect size. The most likely model also includes an effect
in PD, which under the prior correlation matrix (prior
model 12, which assumes high correlations among
traits from the same class, but no correlations other-
wise) is independent of the other studies, allowing it to
have an effect in the opposite direction. SLC44A2 is
upstream of LDLR, a well known lipid locus, and
downstream of TYK2, which has a complex association
with multiple autoimmune diseases. One possibility is
that this SNP is linked to multiple signals of association
and therefore is not necessarily the causal one for
every, or even any, of the traits showing association
(see Figure S15). In any case, this analysis highlights a
genetic variant that is a marker for susceptibility to
multiple traits.

• Chromosome 17 inversion—rs1981997. There is a large
polymorphic inversion on chromosome 17 (Stefansson
et al., 2005; Tobin et al., 2008 ) which contains several
important genes, including the gene MAPT which
shows a strong signal of association with PD (Skipper
et al., 2004; Steinberg et al., 2012; Tobin et al., 2008). A
number of SNPs which tag the inversion show strong
evidence of association in our analysis. The size of the
effect in PD leads to the top model having an effect size
prior with a variance of 0.22, which increases the
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FIGURE 5 Bayesian forest plots of three SNPs highlighted in the genome‐wide scan under the prior assumption for the most likely
posterior model. The dotted lines and open circles show the original effect size and 95% confidence intervals in the WTCCC2 studies. The
filled circles and the solid lines show the mean and 95% credible regions from the posterior distribution under the top model (crosses
indicate the SNP was missing). Posterior effects at zero reflect that the top model assumed no effect in the study. Gray densities at the bottom
show the prior distribution on the effect size under the top model. SNP: single‐nucleotide polymorphism; WTCCC2: the Wellcome Trust
Case Control Consortium 2
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plausibility of large effects in other studies. Interest-
ingly, the top models include associations in glaucoma
in the opposite direction to the PD risk, and Barrett's
esophagus (BO) showing effects in the same direction
with PD.

• ERAP1 mutation—rs30187. The strongest signal of
association outside of the MHC was at rs30187, which
was previously reported as being significantly asso-
ciated with both PS and AS, and these effects also drive
the evidence for association in our analysis. The variant
is a missense change (Lys528Arg) with the effect allele
associated with impaired peptide trimming, which is
more strongly protective in the presence of a predis-
posing HLA allele ( Evans et al., 2011). The top model
identifies this effect as being specific to AS and PS. This
model also assumes effect sizes are strongly correlated
between all diseases that have an effect, with a prior
variance of 0.22. These assumptions couple the effect
size estimates, marginally reducing the posterior
estimates of the study‐wise standard errors for AS and
PS, and increase the effect in PS to become more
consistent with AS.

The above examples highlight how the subset
models can explicitly quantify the extent to which that
the data are consistent with no effect at all in a subset
of studies, and assess assumptions about the size and
correlation in true effects across the remaining studies.
The analysis explores the posterior probability on
2 × 12 × 3 = 37, 748, 73620 models, and therefore, has
substantial flexibility to reveal patterns from the data.
An advantage of this analysis is that any two models
can be compared directly against each other to explore
how well the data support one model over the other.

4 | DISCUSSION

Here we have introduced MetABF, a method for
searching for cross‐trait associations using GWAS sum-
mary statistics. The Bayesian approach allows the
expected relationships between studies or traits to be
encoded in the analysis. When effects are assumed to be
correlated between studies, a strong effect in one study in
the meta‐analysis automatically adjusts the threshold of
evidence required to discover extra associations among
related studies. Because the calculations are fast, we can
compare different models of association under different
priors directly to determine which fits the data best. This
allows us to make probabilistic statements about which
studies showed true effects at a given marker.

This type of approach is attractive in its ability to
combine a large number of heterogeneous GWAS, so to

demonstrate how it can be applied, we jointly analyzed
20 different traits across the WTCCC2 data. Our results
highlighted loci that showed multiple associations across
traits studied which did not achieve genome‐wide
significance in the individual GWAS. Two different
genotyping protocols were used across all the WTCCC2
studies, and some studies contained imputed markers,
meaning that there were data for all traits at fewer than
5% of the markers in our meta‐analysis. In general, our
method would tend to favor a SNP for which there is
information on more studies over a SNP for which there
is less data, but which shows a slightly stronger effect in
one of the studies.

Although we have largely focused our motivation on
meta‐analyzing different traits, the approach is also
applicable to the meta‐analysis of the same trait in
different populations, as was performed in a study of
severe malaria in different African ethnic groups (Band
et al., 2013). In this setting, the prior correlations could be
derived from a measure of similarity between popula-
tions, rather than from a measure of the similarity of
traits. Some consideration is needed for the assumed
source of heterogeneity in effect size between studies
carried out in different ancestry groups. Heterogeneity in
effect size might derive from causal variants having
different correlations with genotyped SNPs, due to
different patterns of linkage disequilibrium. Or, if it
assumed that the causal variant is typed directly, then
heterogeneity in effect might derive from an interaction
between the causal variant and other variants in the
genome, or with the environment.

Cross‐trait analyses, including ours, have limitations.
Specifically, markers with apparent cross‐study associa-
tions may be tagging multiple distinct causal loci. This is
a problem inherent in GWAS in humans, where the
typed marker is rarely the causal variant, but in linkage
disequilibrium with it (Visscher et al., 2012). Implicitly
this up‐weights SNPs that tag multiple causal SNPs and
complicates direct interpretation of the patterns of
associations across studies. Even when the same typed
marker is statistically significant for multiple GWAS, the
underlying causal markers may be different, and this may
be exacerbated by differences in the patterns of linkage
disequilibrium between populations under examination.
Colocalization methods (Giambartolomei et al., 2014;
Hormozdiari et al., 2016; Wen et al., 2017) may be used to
determine if multiple causal variants are likely for
regions that show associations with multiple traits.

An additional challenge is that for every study that is
added, the number of possible models of association
doubles. In a large meta‐analysis, it is computationally
challenging to fully explore the possible subset space, and
to conceptualize their prior probability because each
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model becomes more unlikely on its own. In the
discovery phase of the application to real data described
here, we used a set of prior correlation matrices to cover
the model space in which we thought true associations
might exist, each with equal prior weight. These were
then fully explored using a uniform prior on each
possible model of association. When the prior probability
of there being a true association in any given study is
small, the binomial prior may be of interest as it will
naturally apply shrinkage to the posterior estimate of the
studies that have true effects, thereby reducing the prior
probability on a pleiotropic models. However, the model
averaging approach is valid for any prior weighting on
models, and these should depend on beliefs about the
prior probability of each specific combination of effects
where possible.

These challenges increase further if combinations of
both positive and negative correlations are explicitly
considered. It is possible that when the effect size estimates
are precise (low SE), many of the subset models will have
almost zero probability. In this scenario, the subset
configuration space might be more efficiently explored by
approaches such as Markov chain Monte Carlo (Smith &
Roberts, 1993), or shotgun stochastic search (Hans et al.,
2007). Here we have set parameters for the appropriate
prior distributions. There is however considerable scope for
fitting or estimating the parameters on the size and
correlation of effects across models, and explicitly inferring
the prior probability of SNPs that derive from each of these
models across the genome.

The GWAS has become a standard approach to gaining
insights into the etiology of traits and disease—so common
that it has been performed in an automated manner on
thousands of traits in the UK Biobank (Canela‐Xandri et al.,
2018; Howrigan, Abbott, Churchhouse, & Palmer, n.d.). As
more biobanks are gathered, and as researchers start to
peruse them for genetic associations, MetABF is a useful
tool to determine cross‐trait associations from GWAS. Its
reliance on summary statistics means that access to the raw
genetic data is not necessary. For a reasonable number of
traits it can be applied genome‐wide, overcoming some of
the limitations of a traditional phenome‐wide association
study (Cortes, et al., 2017; Denny et al., 2010; Pendergrass
et al., 2011). We have found the approach to aid in the
assessment of which models of true associations are most
consistent with the observed summary statistics at a variant.
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