17,212 research outputs found
Crystallographic Analyses of Ion Channels: Lessons and Challenges
Membrane proteins fascinate at many levels, from their central functional roles in transport, energy transduction, and signal transduction processes to structural questions concerning how they fold and operate in the exotic environments of the membrane bilayer and the water-bilayer interface and to methodological issues associated with studying membrane proteins either in situ or extracted from the membrane. This interplay is beautifully exemplified by ion channels, a collection of integral membrane proteins that mediate the transmembrane passage of ions down their electrochemical potential gradient (for general reviews, see Refs. 1 and 2). Ion channels are key elements of signaling and sensing pathways, including nerve cell conduction, hormone response, and mechanosensation. The characteristic properties of ion channels reflect their conductance, ion selectivity, and gating. Ion channels are often specific for a particular type of ion (such as potassium or chloride) or a class of ions (such as anions) and are typically regulated by conformational switching of the protein structure between "open" and "closed" states. This conformational switching may be gated in response to changes in membrane potential, ligand binding, or application of mechanical forces. Detailed functional characterizations of channels and their gating mechanisms have been achieved, reflecting exquisite methodological advances such as patch clamp methods that can monitor the activities of individual channels (3). Until recently, corresponding information about the three-dimensional structures of channels was not available, reflecting difficulties in obtaining sufficient quantities of membrane proteins for crystallization trials. Happily, this situation has started to change with the structure determinations of the Streptomyces lividans K+ channel (KcsA (4)) and the Mycobacterium tuberculosis mechanosensitive channel (MscL (5)).
A variety of reviews (6-12) have appeared recently that discuss functional implications of these channel structures. This review discusses these developments from a complementary perspective, by considering the implications of these structures from within the larger framework of membrane protein structure and function. Because of space restrictions, this review necessarily emphasizes membrane proteins that are composed primarily of alpha-helical bundles, such as KcsA and MscL, rather than beta-barrel proteins, such as porins, typically found in bacterial outer membranes
A Simple, Quick, and Precise Procedure for the Determination of Water in Organic Solvents
A procedure for the UV/VIS-spectroscopic determination of water by the use of a solvatochromic pyridiniumphenolate betaine is given. The water content of organic solvents is calculated by a two parameter equation from λmax of the dye. A typical, detection limit is of the order of 1 mg in 1 ml solvent for routine spectrometers. The parameters for the determination of water are given for a number of commonly used solvents
MFC: An open-source high-order multi-component, multi-phase, and multi-scale compressible flow solver
MFC is an open-source tool for solving multi-component, multi-phase, and bubbly compressible flows. It is capable of efficiently solving a wide range of flows, including droplet atomization, shock–bubble interaction, and bubble dynamics. We present the 5- and 6-equation thermodynamically-consistent diffuse-interface models we use to handle such flows, which are coupled to high-order interface-capturing methods, HLL-type Riemann solvers, and TVD time-integration schemes that are capable of simulating unsteady flows with strong shocks. The numerical methods are implemented in a flexible, modular framework that is amenable to future development. The methods we employ are validated via comparisons to experimental results for shock–bubble, shock–droplet, and shock–water-cylinder interaction problems and verified to be free of spurious oscillations for material-interface advection and gas–liquid Riemann problems. For smooth solutions, such as the advection of an isentropic vortex, the methods are verified to be high-order accurate. Illustrative examples involving shock–bubble-vessel-wall and acoustic–bubble-net interactions are used to demonstrate the full capabilities of MFC
Variation and evolution of herkogamy in Exochaenium (Gentianaceae): implications for the evolution of distyly
Backgrounds and Aims The spatial separation of stigmas and anthers (herkogamy) in flowering plants functions to reduce self-pollination and avoid interference between pollen dispersal and receipt. Little is known about the evolutionary relationships among the three main forms of herkogamy - approach, reverse and reciprocal herkogamy (distyly) - or about transitions to and from a non-herkogamous condition. This problem was examined in Exochaenium (Gentianaceae), a genus of African herbs that exhibits considerable variation in floral morphology, including the three forms of herkogamy. Methods Using maximum parsimony and maximum likelihood methods, the evolutionary history of herkogamic and non-herkogamic conditions was reconstructed from a molecular phylogeny of 15 species of Exochaenium and four outgroup taxa, based on three chloroplast regions, the nuclear ribosomal internal transcribed spacer (ITS1 and 2) and the 5·8S gene. Ancestral character states were determined and the reconstructions were used to evaluate competing models for the origin of reciprocal herkogamy. Key results Reciprocal herkogamy originated once in Exochaenium from an ancestor with approach herkogamy. Reverse herkogamy and the non-herkogamic condition homostyly were derived from heterostyly. Distylous species possessed pendent, slightly zygomorphic flowers, and the single transition to reverse herkogamy was associated with the hawkmoth pollination syndrome. Reductions in flower size characterized three of four independent transitions from reciprocal herkogamy to homostyly. Conclusions The results support Lloyd and Webb's model in which distyly originated from an ancestor with approach herkogamy. They also demonstrate the lability of sex organ deployment and implicate pollinators, or their absence, as playing an important role in driving transitions among herkogamic and non-herkogamic condition
Ocean acidification and the loss of phenolic substances in marine plants.
Rising atmospheric CO(2) often triggers the production of plant phenolics, including many that serve as herbivore deterrents, digestion reducers, antimicrobials, or ultraviolet sunscreens. Such responses are predicted by popular models of plant defense, especially resource availability models which link carbon availability to phenolic biosynthesis. CO(2) availability is also increasing in the oceans, where anthropogenic emissions cause ocean acidification, decreasing seawater pH and shifting the carbonate system towards further CO(2) enrichment. Such conditions tend to increase seagrass productivity but may also increase rates of grazing on these marine plants. Here we show that high CO(2) / low pH conditions of OA decrease, rather than increase, concentrations of phenolic protective substances in seagrasses and eurysaline marine plants. We observed a loss of simple and polymeric phenolics in the seagrass Cymodocea nodosa near a volcanic CO(2) vent on the Island of Vulcano, Italy, where pH values decreased from 8.1 to 7.3 and pCO(2) concentrations increased ten-fold. We observed similar responses in two estuarine species, Ruppia maritima and Potamogeton perfoliatus, in in situ Free-Ocean-Carbon-Enrichment experiments conducted in tributaries of the Chesapeake Bay, USA. These responses are strikingly different than those exhibited by terrestrial plants. The loss of phenolic substances may explain the higher-than-usual rates of grazing observed near undersea CO(2) vents and suggests that ocean acidification may alter coastal carbon fluxes by affecting rates of decomposition, grazing, and disease. Our observations temper recent predictions that seagrasses would necessarily be "winners" in a high CO(2) world
Astronomy using basic Mark 2 very long baseline interferometry
Two experiments were performed in April and September 1976 to determine precise positions of radio sources using conventional Mark 2 VLBI techniques. Four stations in the continental United States observed at a wavelength of 18 cm. The recording bandwidth was 2 MHz. The preliminary results using analyses of fringe rate and delay are discussed and the source positions compared with the results of other measurements
Determinations of free and bound ascorbic acid in fishery products
Asorbic acid is found in two different forms in fish tissue. One form, soluble in 95% ethanol, constitutes approximately 85% of the total vitamin C content, and the other form, which is insoluble in 95% ethanol, constitutes approximately 15% of the total. Certain fish products have sufficient ascorbic acid to be of importance as dietary sources. Retention of the vitamin on processing varies with different fish products
The first order convergence law fails for random perfect graphs
We consider first order expressible properties of random perfect graphs. That
is, we pick a graph uniformly at random from all (labelled) perfect
graphs on vertices and consider the probability that it satisfies some
graph property that can be expressed in the first order language of graphs. We
show that there exists such a first order expressible property for which the
probability that satisfies it does not converge as .Comment: 11 pages. Minor corrections since last versio
- …