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PROXIMITY OF CONTii.Al''LEXURE TO PLATE BUCKLING WAD 

by H. H· Spencer+ and A. c. ·;ralker++ 

SUMMARY 

This paper presents a quantitative investigation of the 

correspondence between critical load of plates and contraflexure load on 

a load-deflection dia~am. Their proximity is shown to be imperfection-

sensitive. Alternative procedures not requiring .orior knowledge of 

the initial plate imperfections are sug~ested. Examples are given. 

1. INTRODUCTION 

The continuing practice to meet the scarcity of structural raw 

materials by the use of high-strength thin-walled cold-formed steel 

sections brings in its wake the enhanced need to be able to design 

such structures adequately against buckling failure. It is not so 

long ago that the only type of buclcling behavior to which the majority 

of engineers were introduced was simple Euler-strut buckling 

characterized by a linearized elastic analysis leading to an eigenvalue 

problem in load-deflection space with neutral equlibrium at large 

deflections; (see .fig. la). However, during the last few decades, 

there has been a considerable increase in nonlinear structural 

stability analysis(l),( 2), leading to general formulations(J) and 

+ Senior Lecturer, Applied Mechanics Gp., Hatfield Polyeechnic, England. 

++Reader, Dept. of Cirll Engineering, University College London, England. 

(l)Superscripts in parenthesis refer to references in section 7. 
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2 THIRD SPECIALTY CONFERENCE 

theories(4) o.f nonlinear elastic stability. I.f the fUndamental 

equilibrium path exhibits a local maximum, snap-type o.f bucklint; occurs 

(as shown in .fig. lb) ; i.f, on the other hand, a branch-point or 

intersection-point occurs on the equilibrium-path, the postbuckling 

behavior has been classified by Thompson(5) in accordance with the 

secondary path's initial slope and curvature (as shown in .figs. lc -e). 

The heavy lines in .figs. la - e represent the idealized load-deflection 

behavior o.f mathematical fictions referred to as "perfect" structures, 

(continuous =stable, dashed =·unstable); the light lines represent 

the behavior of real so-called "imperfect" structures, as classified 

by Roorda (6). 

Cold-formed steel structures .frequently can be considered .from 

their behavior as assembla~es o.f plates. This is a fortunate .fact 

inasmuch as it is well known that plates exhibit elastic stable-symmetric 

postbuckling behavior so that there may be a considerable reserve o.f 

strength above the critical load Pc ( =the elastic .first eieenvalue+). 

O.f course, the ultimate plate strength will dep0nd on the inelastic 

behavior; nevertheless Pc remains one o.f the .fundamental parameters(7). 

Unhappily it is an elusive quantity from a physical viewpoint, even .for 

plates; in many cases, because o.f mathematical complications, one still 

determines Pc by resorting to experimental testing. 

A review and qualitative evaluation o.f experimental techniques .for 

determining Pc .for plates was presented by Vann & Sehested(B) at the 

Second Specialty Conference On Cold-formed Steel Structures. One o.f 

the best-known such techniques is the graph proposed by Southwell(9) 

+ A separate list o.f definitions o.f all s,ymbols will be .found in section 8. 
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in 1932 for the case of col~~s. In 1936 Timoshenko(lO) observed that 

"it is advantageous to apply "Lhe method (for the case of plates)" but 

in fact many experiment;ers hav~ had difficulty in ap;1lyinr:; the technique 

to such structural elements (ll). Spencer and :ralker (ll), by 

considering the effect of practical boundary conditions realizable 

experimentally and by using the postbuckling equations for plates, have 

shown quantitatively that the simple Soutbrell Plot may not be reliable 

for either columns or plates. 

Anoth3r widely-used technique for evaluating the P c of plates 

experimentally is the "inflexion-point method" which uses the proximity 

of Pc to PCF (the latter being defined as the load corresponding to the 

point of contraflcxure on a graph of compressive load vs. lateral 

deflection; see fig. 2). The teclmiquc was mentioned (but apparently 

not used) by Hoff(l2 ) reporting in 1948 and by Goan(l3 ) in 1951. It 

has been used extensively by Schlack(l4) and by Schmied et al(l5). 

Vann and Sehested report(S) in 1973 that "as yet, no analytical ~;tudy 
has been presented concc'rning the accuracy of the inflexion-point 

method", and they conclude from a qualitative study (a) that "of the 

three lateral deflection ~echniques discussed, the inflexion-point 

method appears to give the best value of (P c) n and (b) "with the 

possible exceptton of the inflexion-point method, all of the methods 

considered for evaluating (Pc) experimentally tend to decrease in 

accuracy as the imperfection amplitude increases." 

The present paper analyzes the accuracy of the contraflexure 

( =inflexion-point ) method quantitatively on the basis of a series 

approximation to the postbuckling equation for plates, and it compares 

the method witr that of the Spencer Plot. 
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2. f'R.ACTICA:S TEST BOffiJDA,(Y -CONIJL'IONS 

It is worthwhile to con·3ider the background of the experimental 

re3ults from ,lhich one trie.s to infer the vari_ous plate buckling 

characteristics such as critical load, etc. The facility with which 

simple standard boundary conditions can be formulated, bsars no 

relationship to the effort of translating such idealizations into 

practical desi~s. It is ver.f dif:'icult i_ndeed to get reliable 

bucklin·; data, an:! p:·rhaps even more di.l"ficul t t.o inteqJret such data 

accurately. ::;nf'(ineers conceive a str·.:cture in tern1s or its conponcnts 

and tlcus tbcc·o i,; a tend.cncy to desi.;n cxpnrimr>nts on ntructural 

components:. struts, plat•"s, etc. The bucklin·~ behavior of the::;e 

com;::>onents depends markedly on the boundary conJ.itions but, for columns 

ani even mor2 so for plates, it turns out to be virtually impossible 

to realiz,:e in pt·actice the :>imple idealized boundar.r conditions which 

it is customary to assume on paper. The compro:nises which it is then 

necessary to make na:1ifest themselvas as imperfections which, not 

u:1CO!ll!;:only, owinr; to imp rfection-nen::;itivity, cause inaccuracies an:i 

scatter of the postbuc;Gi.n·~ data (3) '(6 ). 

Suppose an a tte:npt in made to re,v·oduce a boundar.r-condi tion as 

amJar>mtly :·>imple as "sinrply-supnorted'1 along a load-beari.nr: edge of a 

test plate; fi c;s. 3a - d show.s four of the solutions which have been 

tried. On•'! of ther1 is here discussed in detail; the effects 

introduced by the o-,hers o.re of cc.>urse col'i~htly different but can be 

characterized g~nerally an imperfections. 

Fig. Ja shows a simple male kni .. :e-cdge on the test-specimen loaded 

by a simple female knife-edge on the bearing-plate. For a start, this 

introduces an un_lal.own error into the effective length of the plate, 
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particularly for thick plates, the more so if one has to allow for the 

possibility of large plate ro~ations so that the male wedge-angle must 

be fairly acute and the female wedr,e-angle fairly obtuse. For the case 

of columns this has been investigated by Hayashi et al(l6). Errors 

probably of a more serious kind would be introduced by the inaccuracies 

of the macbining of the (male and female) knife-edges particularly for 

very thin plates of thickness h ~ say 1 mm. Such errors will be of 

three kinds : Firstly, any amounts by which the averag8 position of 

5 

the knife-edges are off-centre will be "seen" by the experimental results 

as an imperfection of the load-eccentricity type. Secondly, if either 

the male or the female knife-edr,e is not perfectly strais:ht (as viewed 

in the loading-direction), the loaded edge of the specimen will be bent 

which may give rise to cylindrical-panel behavior, and the amount or 

such bending (and hence of such behavior) may change during the course 

of the experiment. Thirdly, (and this problem may also occur with the 

other designs of fig. 3 ,) if the clearance between the two knife-edges 

varies lo:'lgi tudinally, the specimen will experience a form of patch-

loading (l2) • Finally, the sharper the knife-edges have been machined, 

the sooner they are likely to become blunted during an experiment; 

the specimen would then tend to behave as if it experiences partial 

rotational restraint at the loaded edges. 

Perhaps one of the best simulations to simply-supported boundary-

conditions is shown in fig. 3d. This was proposed originally by 

Barlow(l?) fo!" columns, an'i has been developed by Coan(l3) and by 

Walker(lB) for plates. The disadvantage of this solution is twofold: 

Firstly the manufacture of the slotted roller bearings is difficult 

and expensive; secondly, for small plate specimens, the set-up does 
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not necessarily give sufficient longitudinal freedom for differential 

rotation ovdng to the finite length of the bearings . 

Clearly then the entire attempt to reproduce idealized boundary 

conditions for buckling tests in the laboratory is fraught with 

difficulties. The diametrically opposite approach is to test plates 

as they are actually used in engineering practice, and then to attempt 

to analyze the bounctary-condi tions. For example, one can test box 

columns(l5), If the box columns have a square cross-section, and if 

the deflection of the plates under compressive load is such as to keep 

the corners square but rotated, then it is reasonable to assume that 

each buckled plate of the box can be represented by the simply-supported 

plate approximation. In order to analyze such tests one needs also to 

assume that each side of the box carries one quarter of the total 

applied load. 

Thus it becomes abundantly clear that it is essential to 

calibrate whatever experimental set-up is to be used for a buckling 

test. One of the prime parameters for such a calibration is P c • 

If PCF can be used as a measure of Pc then it is necessary to 

know 

(a) how accurately they correspond to one another, 

(b) whether the error can be estimated, and 

(c) under what conditions, if any, this method of measuring Pc offers 

advantages over other methods. 
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). PRACTICAL DS3IGN EQUATIONS FOR THE LATERAL DEFLECTION OF COiiPRESSED PLATES 

The large-deflection behavior of thin, isotropic, elastic, initial~-

flat plates under the action of in-plane forces can be described by the 

Karman equations 

D 4w h:v L (w,F) (1) 

!y4F 
E 

- ~ L (w,w) (2) 

L(w,F) - w,xx: F,yy + w, F, 2 w, F, (3) yy XX xy xy 

in which D !! E h3 ( 1 - )' 2 ) -l I 12 ' E :Young's modulus, h =plate 

thiclmess, F(x,y) !! Airy stress function of generalized plane stress in 

the plate, j e Poisson's ratio, w(x,y) = n<et laterRl plate deflection, 

and x and y are ortbogonal coordinates in the plane of the undeflected plate 

boundary. These equations, together with ~he plate boun,lary conditions, 

form a highly nonlinear boundary-value problem vrhich, though it rr.a.y present 

a stimulating challenge to the research worker, docs not have a form 

sui table for a dec;ign office. 

If w is written as a series swn of thoo =igen-modes of eq (1), 

w 
00 

1: 
m=l 

where wm = ampl1 tudes of eigenr:>odes fm (x ,y) 

(4) 

it is possible to generate a perturbation scheme to obtain explicit series 

that form approximate !nlutions to the large-deflection ec;uationf.< (1) and (2). 

If the eigen'lalues are well-separated, as is o:':"ten the case for pro.ctical 

plate seometries and loading, the perturbation procedure is rapi~ converr;ent 

and the munber of terms required in the series 
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k 
= ~ am(k) s (5) 

where am(k) are coefficients and s is the perturbation parameter, 

is generally small. Stein(l9 ) noted that s = ( P/Pc - 1 )~ is a good 

perturbation parameter for the perfect-plate postbuckling path and this 

was subsequently used by 1l{alker( 20). 

For many practical cases involving rectangular plates, the fundamental 

mode w1 turns out to be predominant and thus to be approximated by the 

maximum total deflection 'If. Also, the symmE:try of plate postbuclcling 

(see fig. 2) requires k in the expansion (5) to be odd, whence finally 

the perfect-plate load-deflection relationship takes the form 

w 
h 

If now one considers the practical real plate, which has an initial 

deflection w0 (x,y) at zero load, the Karman equations assume the form 

(7) 

(8) 

where the subscript T indicate'; total denection from the xy-plane. The 

solution of these equations may be presented as an <,xpansion of 
~ 

( \iVr/h) 2 - (W0 /h)2 y::r where W
0 

h the maximum imperfection amplitude of 

the plate in the same form as the fundamental eigenmode. For moderate 

Wofh , 'filliams and :valker (
2
l) have proposed the nert.urbation parameter 

l. 
( P/P c - 1 + W0 /'.'fT )?. ¢ 

whence 
(9) 

(10) 
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This expression appears to be valid over a wide range of loading 

conditions, boundary conditions, and aspect ratios for rectangular plates. 

The load-deflection curves for these numerous cases have been calculated 

by numerical solution of the boundary-value problem using a finite-

difference dyn~ic-relaxation program, and subsequently the coefficients 

A1 and A
3 

have been found by curve fitting(2l). It is worthlvhile 

emphasizing that, for moderate imperfections, the coefficients A1 and A
3 

in eq (9) are the same as the ones in eq (6), so that the results of the 

perfect-plate analysis can be used for the imperfect plate. Thus, 

provided A
1 

and A
3 

are known, eq (10) represents a very powerful design 

tool. A partial list of A1 and A3 from ref. 21 is given in Table 1. 

Boundary Conditions 

simply-supported 
all round 

loaded edges 
simply-supported; 

1.0 

l~Lr-

.. - - .. --·--· 
1.0 

.::0 lateral edges 
rotationally restra1 

simply-supported 
all round 

------y:-0---

---t 20J 

Aspect 
Ratio 

... ---- .o_ .• .;;~-· . 

1.0 : 1 

-

1.5 : l 

-·----~ 

2.0 : 1 

I 

i 
I 

Lateral Edges 
Stress-free 

I Al ' A3 I 
I 

-·-· 
; 
' 2.157 0.010 ; 

' I 
I 

1.846 -0.101 

·---

1.430 I Q.203 

I 
Table 1: Partial List Of Coefficients A1 And A

3 

Lateral Edges 
Straight 

Al A3 

1.840 -0.259 

' 
I 

' 
1.812 -0.097 

1.408 Q.l68 
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4. QUANTITATIVE ANALYSIS OF PROXTIITTY OF LOAD-DEFLtl::TION-cONTRAFLEXURE 

TO CRITICAL LOAD OF PLATES. 

The perturbation solution eq (10) enables postbuckling problems of 

plates to be discussed quantitatively to a high degree of approximation. 

It is clear from Table 1 that, in general, the absolute value of the 

perturbation coefficient A
3 

is an order of magnitude smaller than that 

of A1 • In view of the rapid convergence of the series one feels 

justified in truncating the right side of eq (10) to two terms only 

to obtain 

( (W~h) 2 
- (Wjh) 2 )?z .. A

1 
1J + A

3 
tJ3 

Now 

(11) 

(12) 

so that differentiation with respect toW is the same as with respect to WT. 

From the square of eq (9) 

2 
(¢ ) 'w 

(1J2 )'ww ~ P,vr/Pc + 2 Wo/'tfT3 

where •w denotes d/ d'H 

(13) 

(14) 

By squaring eq (11), repeated differentiation, and use of eqs (13) and (14), 

it can be sho\m that 

and 

\'{0 

"' 2 "T 
+ 

1 
(15) 

(16) 
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At contraflexure P •ww· = o . Using the subscript CF for the 

values of the variables at contraflexure, eqs (15) and (16) give 

r. 2 + 2 Wei<' 1 
p,W(CF/P c = 'NOilfCF -- • (17} 

(Alh)2 1 + 4(A3/Al)(¢CF2) + 3(A3/Al)2(¢CF2)2 

and 

2 (-;V
0

/WQF3 ) ( 1 + 4(A/A1 )(¢c/) + 3(A3/Al)
2
(¢c/)

2 
) 

= 2/(A1h)
2 

- 4(A/~)(P'W(CF)/Pc - W0 /l'lc/)2 (1 + 3/2 (AyA1 )¢cF
2 

(18) 

By considering A/A
1 

<< 1, eq (18) yields the useful ap:-roximat,ion 

WofWcF ~ ( WcF/ (Alb) )2 (19) 

which, when used in eq (11), gives 

Pc~Pc ~ 1- (Wo/h)2/Al2 (20) 

Similarly, by using eq (17) to calculate an approximation to P'W(CF) and 

reversion of eq (11), it can be shovm that, to a higher degree of 

approxi.ma tion, 

(21) 

The proximity of P CF to P c can nov• be calculated provided that 

A.1 , A.
3 

, W0 /h , and W
0

/WCF are known for the test being analyzed. The 

second correction term on the right side of eq (21) can be approximated by 

use of eq (19) to give 

10 (Wc/WcF)
2 

A/Al -;:; 10 ( We/ (A1h) )
4/J A/Al (22) 

However, in practice there would be no need to use this approximation 

because WCF z W
0 

+net deflection at contraflexure, the latter being 

determined at the same time as PCF . 
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It is intecesting to note that, if A1 and A3 are of like :;ign, 

the two correction terms on the rig;J".t side of eq (21) tend to cancel each 

other • On the other hand, as can be seen from Table 1, it is precisely 

.for the practically important case of the uniaxially-loaded, sinrply-

supported, square plate ?ii th lateral edges held straight that A1 c;.nd A 3 

are of opposite sign. 

Tables 2 and 3 present numerical values of the two correction terms 

~h o.1o o.5o 1.00 

Al 

~WCF 0.10 0.20 0.40 

lA . 

1.2 o.oo69 0.174 0.694 o.o5 o.oo5 0.020 o.oBo 

1.3 0.0059 0.148 0.592 0.10 0.010 0.040 0.160 

1.4 o.oo51 0.128 0.510 0.15 0.015 o.o6o 0.240 

1.5 0.0044 0.111 0.444 0.20 0.020 o.o8o 0.320 

1.6 0.0039 0.098 0.391 0.25 o.o25 0.100 o.4oo 

1.7 0.0035 0.087 0.346 o.Jo 0.030 0.120 o.48o 

1.8 0.0031 0.077 0.309 0-35 o.o35 o.14o o.56o 

1-9 0.0028 0.069 0.277 0.40 o.04o 0.160 o.64o 

2.0 o.o025 0.063 0.250 

2.1 0.0023 0.057 0.227 

2.2 0.0021 0.052 0.207 

Table 2: Values of f.:Nc/h) 2/A/ Table 3: 
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EXAJ:TPLE 

The example chosen is for the case of a simply-supported square 

plate, uniaxially-loaded, with lateral edges stress-free, this example 

being amonr; the most favorable to the Contraflexure L"ethod. 

For this case, from Table l, and A) = Q.Ol 

From a finite-difference program run at University College London(ll) 

to study plate postbuckling behavior, for this case: 

For W/h = 0.05 • there results '!1
0
/JcF = o.o83 ; 

hence PCF/Pc = l - o.ooo54 + Q.Q009l 

For Wc/h o.so • there results YIJ'.VCF 0.)6 

hence PCF/Pc = l - o.o54 + o.oo6 

5. EVALUATION OF CONTl'lAFI£XURE l.!c.THOD AND C01lPARISON ,fiTH SPrllC~ PLOT 

The effect (on the proximity of PCF to Pc) of introducing the second 

perturbation constant A3 has been shown in eq (2l) in terms of the 

ratio Wc/WcF • For the present discussion it will suffice to introduce 

the approximation (22) into eq (2l) to obtain 

'IS' l 

Therefore the sensitivity of the contraflexure-proximity PCp/Pc to 

the relative imperfection W
0
/h is given by 

(24) 
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Similarly the sensi.tivi ty of the cont.raflexure-proximi ty to the 

perturbation constants A1 and A
3 

is given by 

·a (P cF./P c) 
= + _2_ (Wo/h)2 70 A3 

( Wof(Alh) )4/3 o A1 A 3 3 A2 1 1 

o(PCF/Pc) 10 
( !fo/(4.rh) )4/3 = 

o AJ Al 

Nith the aid of eqs (23) to (26) a quantitative appraisal of the 

contraflexure method can now be attempted. First of all the question 

arises: how accurately can P CF be located from experimental data? 

Certainly tr~s problem appears to have been solved successfully in the 

careful experiments reported by Schlack(l4) who, however, was fortunate 

in this respect in dealing with very small imperfections. studies by 

(25) 

(26) 

the authorH on computer-generated data indicate that the infle}:i0:1 point 

is reasonably easy to find for Nofh < 0.1, inc:•easingly difficult to 

find for 0.1 < Wofh <. 0.5 , and aL"!!ost impossible for W
0
/h :> o.5 

r;'or practical data with sea tter, it is probably necessary to use some 

least-squares approach to improve on the technique of locating PCF with 

a French curve • However, if one already goes to the expense and trouble 

of running some least-squares computer program, then why bother with PCF 

at all ·:rhen it would be possible to use the program to find the empirical 

constants in eq (11) directly ? 

Once PCF has been determined by the experimenter (and sometimes 

this can indeed be done by inspection), eq (23) shows how Pcr/Pc depends 

on Wofh • It is clear from Tables 2 and 3 that the necessary corrections 

are not always negligible. How then is one to measure W0 ? It is 

possible to develop apparatus<22) to measure the initial lack of flatness; 
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however, W
0 

should be thouccht of not as the true ph.vsical imp<'rfection 

but as an ocmpirical constant which will make eq (11) fit the data. The 

writers have conducted extensive numerical analyses of their own plate-

deflection data and of the data published in the literature, by means of 

the nonlinear least-squares programs(23) developed at the Humerical 

Optimisation Centre, Hatfield Polytechnic, to find these empirical constants 

from the point-of-view of Curve Fitting. If, for example, one takes 

Schlack's data, ref. 14, •rable 1, lJ = 0.0, then, for the results of 

three of Schlack 1 s runs (which plot so closely together on a superimposed 

load-deflection graph tbat it is almost impossible to distinf,Uish bEtween 

the three sets of points) ','{ 
0 

varies approxjmately 25%. 

uncertainty of boundary conditions discussed in Section 2, 

And as for the 

it is clear 

that the effect on the post-critical curvature A1 mi "ht approacl1 20% . 

If the values of tlle coefficients A1 and A
3 

from Table 1, for 

the simply-supported,uniaxially-loaded, square plate \1ith Wofh 0.5 

are introduced into eqs (24), (25) and (26), the following gradients are 

obtained for the sensitivity of Pcl/Pc with resp ,ct to the empirical 

constants: 

il(Pc~Pc) -0.20 for stress -free lateral edges 

a(wo/h) -0.96 for straight lateral edges 

o(PCF/Pc) 0.04 for stress-free lateral edges 

a A1 o.4o for straight lateral edges 

d(Pc!Pc) 0.66 for stress-free lateral edges 

a A
3 0.96 for straif~ht lateral edges 

Clearly then it is necessary to have some information on the order 

of magnitude of the imperfection before a decision can be made as to 

whether or not PCF is a good measure of PC • 
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Final~ a brief comparison will be sketched with the results of the 

Spencer plot(ll). This graphical procedure starts with eq (10) with the 

right side truncated to one term only, leaving three empirical constants 

By means of the pivot point concept(ll),(24), 

one of these can be eliminated; the Spencer plot eliminates A1 (thus 

tending to eliminate the effect of boundary conditions provided they 

remain constant during the test), and then predicts that there is a linear 

relationship between two functions ~ and H2 of (P,W) such that a 

graph of H1 vs. H2 will give a straight line whose slope and intercept 

are measures respectively of Pc and W
0 

The elimination of A1 

does not of course eliminate the effect of the boundary conditions on Pc 

The restrictions on the technique are that the imperfection must be small 

compared to the maximum reliable deflection data, and it checks on this 

assumption because it finds a measure of W
0 

For the data shown in the example at the end of section 4, the 

Spencer plot gave an accuracy of 2% 

For Schlack's data, ref. 14, Table l, 'If., o.o, average of three runs, 

Schlack founcl. P CF = 2890 lbs., the Southwell plot is so nonlinear that 

it yields nothing (ll) , and the Spencer plot found P c = 2850 lbs and 

Unfortunately such apparently good correspondence between 

PCF and Pc may hide unsuspected experimental errors. If, for example, 

one examines the experimental data of some of the great pioneer work on 

plate buckling done by the Hoff group at the Polytechnic Institute of 

Brooklyn, e.g: Coan 1 s specimen 28A, (ref. 13, fig. 4), estimated 

Wofh = 0.05, one must agree that PCF occurs close to Pc The 

Southwell plot is not only curved but its slope changes sign. But the 
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Spencer plot (con1'ined to P/Pc < 2.0 so that any possibility of 

plasticity effects is ruled out), see fig. 4 and ref. ~1 for method 

and notation, sh~vs up two, distinct, sharply-defined, separate, 
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linear portions giving normalized critical loads of about 0.97 and 1.11 

respectively. This could have been caused by a change of boundary 

conditions during the test. Even if one questions the pivot point 

concept("4) on which tne Soencer plot is based and prefers some 

statistical-based numrrical analysis, the rormer flrocedure gives a 

quick, direct, visual idea of where to start looKing for a change in 

boundary conditions. 

If a change of bounaary conditions duri.ng a test is not sudden but 

gradual, nwwcrical. proc:edures may not be capab.Le of anaJ.yzing the 

phenomenon by the application o~' statistical theory. wring a post-

bucJ,ling test conducted at University College London on a simply-

supported, square, uniaxially-loaded, spring-steel plate, PC? occured 

undoubtedly at about 12 kN. A point-by-point anc..lysis or the data (ll) 

using three pivot points revealed that, as the test was progressing, 

Pc was effectively changing fron 6 to 14 kN; i.e: the boundary 

conditions were r,radually changing as the load was ap~1lied. 

It would appear that the pivot point concept <24 ) is capable of 

being extended to measure also the po.st-cr:i.tical curvature, again by a 

graphical procedure. ·:rork is currently proceedir:.g on this. 
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6. CONCLt.BIONS 

The contraflexure method f'or plates can be used with very smooth data 

to give a quick apJroximate guide to the critical load. It has been 

shmm here that if the intrinsic iJtVErfections in the plate and in the 

test bounaary conditions are small, th"' error incur:<ed by the use of the 

inflexion point will consequently be very small. Ho-.vever, as the 

imperfecti_on mac-ni tu.<les increase, the error becomes r;rea ter an:l may 

becoMe unacceptably large. Formulations are presented in this paper 

from vrhich, with a knmvledge of the imperfection and of the perfect-plate 

posto~ckling characteristics, the magnitude of the error can be calculated. 

H~Hever, an impo~tant feature is that if L~for~tion regarding the 

imperfection and boundary-condition parameters is required, a better 

approach would be to use a variation of the Southwell m~thod knoYm as 

the Spencer plot. 
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B. NOTATION 

c 

CF 

D 

E 

F 

h 

L 

y 

0 

p 

p 
c 

s 

T 

w 

w 

x,y 

coefficient of sk in the expansion of wm 

i'th coefficient in the series-expansion of 17 

las a subscript) pertaining to conditions at P0 

las a subscript) pertaining to conditions at P CF 

E h3 I ( 12 (1 - )I?) 

Young's modulus 

m'tn eigenmode of w 

Airy generalized plane stress l·unction 

)
J.. 

( P/P c - 1 + W0 j\VT ' 

Schlack's perr·orated-plate diamr?ter-ratio 

plate -c.hicKness 

·.Yolmir operator 

Poisson's rat.io 

(as a suusc1·ipt.) pertaining to initial conditions part.icuJ.arl.y 
imperfections 

total compressive edse load on a plate 

critical .J.oad lov:ec>t eicenva.J.ue .J.oad 

contrafleXure .Load = load at 1vhich contraflexure on a load: 
deflection diagram occurs 

perturoa-c.ion parameter 

(as a subscr·ipt) refers to ••total" usua.J.l.y deflection, as distinct 
from 11net 11 deflections (ur.cmoscripted). 

net plat" de!'.J.ection as a function of lx,y) 

a"lnl i. -c.uc1e or -c.he m 1 tr ei,c;enmoc.e or w 

ini t.ia . .l f.l.a -c.e impc•rfcctJon A.S a t"unc-c.ion ol" (11: ,y) 

1'1 + w 
0 

= "t c tal 11 p.La te (\e flee tion as a fu.'1C ticn of (x ,y) 

central del'lectio., ~ value ol' v•lx,y) at the centre of the plate 

central init.i<.l impel'l'ection = w
0

\x,y) at the centre o.:.· -c.he plate 

total central deflection Wrlx,y) at plate centre 

or-c.hogo:1al coordina-ces in p.J.ane of unJei'lected pla tt· bounctary 
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