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PROXINMITY OF CONTRAFLEXURE TO PLATE BUCKLING LOAD

by H. H. Spencer™ and A. C. walker™™

SUMMARY

This paper presents a quantitative investigation of the
correspondence between critical load of plates and contraflexure load on
a load-deflection diagram. Their proximity is shown to be imperfection-
sensitive. Alternative procedures not requiring prior knowledge of

the initial plate imperfections are suggested. Examples are given.

1. INTRODUCTICN

The continuing practice to meet the scarcity of structural raw
materials by the use of high-strength thin-walled cold-formed steel
sections brings in its wake the enhanced need to be able to design
such structures adequately against buckling failure. It is not so
long ago that the only type of buckling behavior to which the majority
of engineers were introduced was simple Euler-strut buckling
characterized by a linearized elastic analysis leading to an eigenvalue
problem in load~deflection space with neutral equlibrium at large
deflections; (see fig. 1la). However, during the last few decades,
there has been a considerable increase in nonlinear structural

stability analysis(l)’(e), leading to general formulations(3) and
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theories(h) of nonlinear elastic stability. If the fundamental
equilibrium path exhibits a local maximum, snap-type of buckling occurs
(as shown in fig. 1b); if, on the other hand, a branch-point or
intersection-point occurs on the equilibrium-path, the postbuckling
behavior has been classified by Thompson(s) in accordance with the
secondary path's initial slope and curvature (as shown in figs. lc - e).
The heavy lines in figs. la - e represent the idealized load—deflection
behavior of mathematical fictions referred to as perfect®" structures,
(continuous = stable, dashed ='unstable); the light lines represent
the behavior of real so-called "imperfect!" structures, as classified
by Roorda(6).

Cold-formed steel structures frequently can be considered from
their behavior as assemblages of plates. This is a fortunate fact
inasmuch as it is well known that plates exhibit elastic stable-symmetric
postbuckling behavior so that there may be a considerable reserve of
strength above the critical load P, ( = the elastic first eigenvalue+).
Of course, the ultimate plate strength will depeond on the inelastic
behavior; nevertheless P, remains one of the fundamental parameters(7).
Unhappily it 1s an elusive quantity ifrom a physical viewpoint, even for
plates; in many cases, because of mathematical complications, one still
determines Pc by resorting to experimental testing.

A review and qualitative evaluation of experimental techniques for
determining P, for plates was presented by Vann & Sehested(e) at the
Second Specialty Conference On Cold-formed Steel Structures. One of

the best-known such techniques is the graph proposed by Southwell(9)

+
A separate list of definitions of all symbols will be found in section 8.
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in 1932 for the case of columns. In 1936 Timoshenko(lo) observed that

nit is advantageous to apply the method (for the case of plates)® but
in fact many experimenters have had difficulty in aprlying the technique

to such structural elements(ll). (ll)’ by

Spencer and Jalker
considering the effect of practical boundary conditions realizable
experimentally and by using the postbuckling equations for plates, have
shown quantitatively that the simple Soutlwell Plot may not be reliable
for either colums or plates.

Another widely-used technique for evaluating the Pc of plates
experimentally is the "inflexion-point method? which uses the proximity
of Pc to PCF (the latter being defined as the load corresponding to the
point of contraflcxure on a graph of corpressive load vs. lateral
deflection; see fig. 2). The technique was mentioned (but apparently
not used) by Horf(*2) reporting in 1948 and by Goan(*3) in 1981. Tt
has been used extensively by Schlack(14) and by Schmied et a1(35).

(8)

Vamn and Sehested report in 1973 that "as yet, no analytical study
has been presented concerning the accuracy of the inflexion-point
method", and they conclude from a qualitative study (a) that "of the
three lateral deflection btechniques discussed, the inflexion-point
method appears to give the best value of (P,) " and (b) “"with the
possible exception of the inflexion=-point method, all of the methods
considered for evaluating (Pc) experimentally tend to decrease in
accuracy as the imperfection amplitude increases.®

The present paper analyzes the accuracy of the contraflexure
( = inflexion-point ) method quantitatively on the basis of a serles
approximation to the postbuckling equation for plates, and it compares

the method with that of the Spencer Plot.
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2. PRACTICAL TEST BOULDARY-CONDI I TONS

It is worthwhile to consider the background of the experimental
results from which one tries to infer the various plate buckling
characteristics such as critical load, etc. The facility with which
simple standard boundary conditions can be formulated, bears no
relationship to the effort of translating such idealizations into
practical desimms. Tt is very difficult indeed to get reliable
bucklinz data, ant perhaps cven more ditrficult to interpret such data
accurately. snegineers conceive a structure in terms of its components
and thus there is a tendency to desisn experiments on structural
components:  struts, plates, etc. The bucklinz behavior of these
comoonents depends markedly on the boundary conditions but, for colums
and even mors so for plates, it turns out to be virtually imgossible
to realize in practice the simple idealized boundary conditions which
it is5 customary to assume on paper. The compromises which it is then
nccessary to make manifest themselves as imperfections which, not
uncomronly, owing to imp-rfection-sensitivity, cause inaccuracies and
scatter of lhe postbuckline data(B)’(é).

Suppose an attempt is made to renroduce a boundary-condition as
anvarently simple as "simply-suororted? along a load-bearing edge of a
test plate; fiss. 3a - 4 shows four of the solutions which have been
tried. One of them is here discussed in detail; the effects
introduced by the others are of course <lishtly different but can be
characterized generally as imperfections.

Fig. 3a shows a simple male kniie-edge on the test-specimen loaded
by a simple female knife-edge on the bearing-plate. For a start, this

introduces an unknown error into the effective length of the plate,
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particularly for thick plates, the more so if one has to allow for the
possibility of large plate rovations so that the male wedge-angle must
be fairly acute and the female wedge-angle fairly obtuse. For the case
of columns this has been investigated by Hayashi et al(lé). Errors
probably of a more serious kind would be introduced by the inaccuracies
of the machining of the (male and female) knife-edges particularly for
very thin plates of thickness h € say 1 mm. Such errors will be of
three kinds: Firstly, any amounts by which the average position of
the knife-edges are off-centre will be "seen" by the experimental results
as an imperfection of the load-eccentricity type. Secondly, if either
the male or the female knife-edge is not perfectly straight (as viewed
in the loading-direction), the loaded edge of the specimen will be bent
which may give rise to cylindrical-pancl behavior, and the amount of
such bending {and hence of such behavior) may change during the course
of the experiment. Thirdly, (and this problem may also occur with the
other designs of fig. 3 ,) if the clearance between the two knife-edges
varies longitudinally, the specimen will experience a form of patch-
loading(lz). Finally, the sharper the knife-edges have been machined,
the sooner they are likely to become blunted during an experiment;
the specimen would then tend to behave as if it experiences partial
rotational restraint at the loaded edges.

Perhaps one of the best simulations to simply-supported boundary-
conditions is shown in fig. 3d. This was proposed originally by

Barlow2") for columns, ani has been developed by Coan3)

(18)

and by
Walker for plates. The disadvantage of this solution is twofold:

Firstly the manufacture of the slotted roller bearings is difficult

and expensive; secondly, for small plate specimens, the set-up does
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not necessarily give sufficient longitudinal freedom for differential
rotation owing to the finite length of the bearings.

Clearly then the entire attempt to reproduce idealized boundary
conditions for buckling tests in the laboratory is fraught with
difficulties. The diametrically opposite approach is to test plates
as they are actually used in engineering practice, and then to attempt
to analyze the boundary-conditions. For example, one can test box

as),

colums If the box columns have a square cross-section, and if
the deflection of the plates under compressive load is such as to keep
the corners square but rotated, then it is reasonable to assume that
each buckled plate of the box can be represented by the simply-supported
plate approximation. In order to analyze such tests one needs also to
assume that each side of the box carries one quarter of the total
applied load.

Thus it becomes abundantly clear that it is essential to
calibrate whatever experimental set-up is to be used for a buckling
test. One of the prime parameters for such a calibration is Pc .

If PC can be used as a measure of P, then it 1s necessary to

3
know
(a) how accurately they correspond to one another,
(b) whether the error can be estimated, and

(c) under what conditions, if any, this method of measuring Pc offers

advantages over other methods.
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3. PRACTICAL DZSIGN EQUATIONS FOR THE LATERAL DEFLZCTION OF COIPRESSED PLATLES

The large-deflection behavior of thin, isotropic, elastic, initially-
flat plates under the action of in-plane forces can be described by the

Karman equations

%v by - L (w,F) @
%th = -} L (ww) (2)
L(W»F) = Wyn F’yy + Wsyy F’xx - 2 va F,)Q' (3)

ijnwhich D= Eh3 (1 -»2 )—l / 12, E = Young's modulus, h = plate
thickness, F(x,y) = Airy stress function of generalized plane stress in
the plate, Y = Poisson's ratio, w(x,¥) = net lateral plate deflection,
and x and y are orthogonal coordinates in the plane of the undeflected plate
boundary . These ecuations, together with the plate bowndary conditions,
form a highly norlinear boundary-value prcblem which, though it may present
a stimulating challenge to the research worker, does not have a form
suitable for a design office.
Ir w is written as a series swn of the sigen-modes of eq (1),
00
w = mE]_ wy £ (x ) )
where W = amplitudes of eigenmodes fm(x )
it is possible to generate a perturbation scheme to obtain explicit series
that form approximate s»lutions to the large-deflection ecuations (1) and (2).
If the cigenvalues are well-separated, as is often the case for practical
plate ceometries and loading, the perturbation procedure is rapidly convergent

and the number of terms required in the series
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. = Eam(k) sk (5)

where am( are coefficients and s is the perturbation parameter,

k
is generaliy small. Stein(19) noted that s = ( P/P, -1 )15 is a good
perturbation parameter for the perfect-plate postbuckling path and this
was subsequently used by ‘Halker(zo).

For many practical cases involving rectangular plates, the fundamental
mode Wy turns out to be predominant and thus to be approximated by the
maximum total deflection W. Also, the symmetry of plate postbuckling
(see fig. 2) requires k in the expansion (5) to be odd, whence finally

the perfect-plate load-deflection relationship takes the form

g— = Al(P/Pc—l)%+ AB(P/PC-1)3/2+... 6)

If now one considers the practical real plate, which has an initial

deflection wo(x,y) at zero load, the Karman equations assume the form

% V}-L ( wT - W, ) = L(WT:F) (7)
%ﬂ- v L F = = L{w,w) + L(w,.w,) ®

where the subscript T indicates total deflection from the xy-plane. The
solution of these equations may be presented as an expansion of

1
( (er\/l'l)2 - (Wo/h)2 )? where W_ is the maximum imperfection amplStude of

o
the plate in the same form as the fundamental eigenmode. For moderate

Wo/h y #lliams and ‘.Valker(21) have proposed the perturbation parameter

i
g = (PB/P, -1 +W i, )? (%)
whence

(G/m)? - y/mDE = m B o+ a8 - .. (10)
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This expression appears to be valid over a wide range of loading
conditions, boundary conditions, and aspect ratios for rectangular plates.
The load-deflection curves for these numerous cases have been calculated
by numerical solution of the boundary-value problem using a finite-
difference dynamic-relaxation program, and subsequently the coefficients
A and A3 have been found by curve fitting(21). It is worthwhile
emphasizing that, for moderate imperfections, the coefficients Al and A3
in eq (9) are the same ac the ones in eq (6), so that the results of the
perfect-plate analysis can be used for the imperfect plate. Thus,
and A, are known, eg (10) represents a very powerful design

1 3
tool. A partial list of Aq and A3 from ref. 21 is given in Table 1.

provided A

Boundary Conditions Aspect Lateral Edges Lateral Edges
Ratio Stress-~-free Straight
A A A
1 3 1 Aq
S . N

simply-supported 1.0 1.0 : 1 § 2.157 { 0.010 | 1.8L0 |-0.259

all round 1.0
.+l }$ |
1.0 7 ]
loaded edges croszce: 1.5 :1 | 1.846 }-0.101 | 1.812 |-0.097

simply-supported; 1.5
—|

lateral edges
rotationally restrained==7-7

1.0

2.0{ 2.0 = 1 1.L30 | 0.203 | 1.408 | 0.168

- [~ %

simply-supported
all round

Table 1: Partial IList Of Coefficients Al And A3
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k. QUANTITATIVE ANALYSIS OF PROXIMITY OF LOAD-DEFLECTION-CONTRAFLEXURE

TO CRITICAL LOAD OF PIATES.

The perturbation solution eq (10) enables postbuckling problems of
plates to be discussed quantitatively to a high degree of approximation.
It is clear from Table 1 that, in general, the absolute value of the

perturbation coefficient A, is an order of magnitude smaller than that

3

of Ay - In view of the rapid convergence of the series one feels

justified in truncating the right side of eq (10) to two terms only

to obtain

2 2% . 3
( (W/n)* - W /)< ) A p o+ Ay (11)
Now Wp = W+W, 12)
so that differentiation with respect to W is the same as with respect to W..

T

From the square of eq (9)
2 2
(8 )’w = Py /Pe - W /g (13)
2
B ogy = Pog/Po + 2 WS aL)
where »y denotes d/aw

By squaring eq (11), repeated differentiation, and use of eqs (13) and (14),

it can be shown that

Poy Wy 2 Wy 1

.2, . (15)
Pe Wp 0?1 kGay/a) @) + 30ay/0))2)?

and

Poge 2 . 2/(A1h)2 - L(Ay/A ) (Byy/P, - W, /p2)2 (1 + 3/2 (Ay/a)) (89 )
P, W 1 + L(ay/a)) (80) +3 (aya)? (897
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At contraflexure P’M‘I = 0. Using the subscript CF for the

values of the variables at contraflexure, egs (15) and (16) give
)/Pc = W VCFz * : WCF2' = > NG 73
(A1h)° 1+ L(Ay/a))(Bep?) + 3(ay/a)“(Bp®)

Frr(cr

and
2 (/fige®) (1 + L(ay/a)) (B,02) + 3(83/80)%(Bes2)2 ) =
= 2/AR)? - LlAy/A)) Pryepy /P, - W M2 (L + /2 (ag/ay Ve
(18)

By considering AB/Al « 1, eq (18) yields the useful aprroximation

WolVgp 3 (Wop/ (aqn) )? (19)

which, when used in eq (11), gives

Po/P, ¥ 1= (/n)?/a° (20)
Similarly, by using eq (17) to calculate an approximation to P’\‘I(CF) and
reversion of eq (11), it can be shown that, to a higher degree of
approximation,

PCF/PC = 1 - (vcrc/h)z/xx.l2 + 10 (wxio/*.\rc}?)2 A3/Al (21)

can now be calculated provided that

The proximity of PCF to Py

Al ’ A3 ’ Wo/h s and WO/WCF are known for the test being analyzed. The
second correction term on the right side of eq (21) can be approximated by
use of eq (19) to give

10 (WO/WCF)2 Ay/Ay  F 10 (Wy/(Ajh) )h/3 Ay/Ay (22)
However, in practice there would be no need to use this approximation
because WCF = W P net deflection at contraflexure, the latter being

determined at the same time as PCF .
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Tt is interesting to note that, if Ay and A3 are of like sign,
the two correction terms on the right side of eq (21) tend to cancel each
other. On the other hand, as can be seen from Table 1, it is precisely
ror the practically important case of the uniaxially-loaded, simply-
supported, square plate with lateral edges held straight that 4; &ard A3
are of opposite sign.

Tables 2 and 3 present numerical values of the two correction terms

over a practical range of parameters Aj; and ‘:‘fo/h, and [A3/A;]| and '."'O/WGF .

W /h 0.10 0.50 1.00 wo/wCF 0.10 0.20 0.40
Ay [A3/A1
1.2 0.0069  0.174  0.694 0.05 0.005 0.020 0.080
1.3 0.C059 0.1L8 0.592 0.10 0.010 0.0L0 0.160
1.4 0.0051 0.128 0.510 0.15 0.015 0.060 0.2L0
1.5 0.00Lh 0.111  O.LLk 0.20 0.020 0.080 0.320
1.6 0.0039 0.098 0.391 0.25 0.025 0.100 0.L00
1.7 0.0035 0.087 C.3L6 0.30 0.030 0.120 0.L80
1.8 0.0031 0.077 0.309 0.35 0.035 0.140 0.560
1.9 0.0028 0.069 0.277 0.L0 0.040  0.160 0.640
2.0 0.0025 0.063 0.250
2.1 0.0023 0.057 0.227
2.2 0.0021 0.052 0.207

. 2 2
Table 2: Values of (W /h)“/a, Table 3: Values of 10(""0/"'CF)2(A3/A1)
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EXANPLE

The example chosen is for the case of a simply-supported square
plate, uniaxially-loaded, with lateral edges stress-free, this example
being among the most favorable to the Contraflexure lfethod.

For this case, from Table 1, Ay = 2.16 and A3 = 0.0L .

From a finite-difference program run a2t University College London(ll)

to study plate postbuckling behavior, for this case:

For wo/h = 0.05 , there results ‘:ro/wCF = 0.083 ;
hence PCF/PC = 1 - 0.0005L + 0.00091 = 1.0005
For W_/h = 0.50 , there results '-aro/wCF = 0.36 ;

hence PCF/PC = 1 - 0.054 + 0.006 = 0.95

5. EVALUATION OF CONTRAFLEXURE McTHOD AND COMPARISON #ITH SPi:NCiR PLCOT

The effect (on the proximity of PCF to Pc) of introducing the second
perturbation constant A3 has been shown in eq (21) in terms of the
ratio W /Wgp - For the present discussion it will suffice to introduce

the approximation (22) into eq (21) to obtain

Poe/fe 1 = (Wo/agm) )2+ 10 ay/ay (W (agm) )Y (23)

Therefore the sensitivity of the contraflexure-proximity PCF/PC to

the relative imperfection Wo/h is given by

3(Pop/Pe) 2 W, 4o a4 1/3
a(wo/h) A12 ;- + -;;:2 ('Q/(Alh) ) (2h)
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Similarly the sensitivity of the contraflexure-proximity to the

perturbation constants Al and A3 iz given by

3(Pep/Pe) 2 2 70 A

X W /h) - 3 v )4/3
d a4y T o 3 7 (T )
d(P./P,)
Oep/Pe) 2 Caagm ) (26)
3 g !

Mth the aid of egs (23) to (26) a quantitative appraisal of the
contraflexure method can now be attempted. First of all the question
arises: how accurately can PCF be located from experimental data?
Certainly this problem appears to have been solved successfully in the
careful experiments reported by’Schlack(lh) who, however, was fortunate
in this respect in dealing with very small imperfections. Studies by
the authors on computer-generated data indicate that the inflexdon point
is reasonably easy to find for Wo/h < 0.1, incrreasingly difficult to
find for 0.1 < W,/h < 0.5 , and almost impossible for W,/h > 0.5 .
For practical data with scatter, it is probably necessary to use some
least-squares approach to improve on the technique of locating PCF with
a French curve. However, if one already goes to the expense and trouble
of running some least-squares computer program, then why bother with PGF
at all when it would be possible to use the program to find the empirical

constants in eq (11) directly ?

Once PCF has been determined by the experimenter (and sometimes
this can indeed be done by inspection), eq (23) shows how PCF/Pc depends
on Wo/h . It is clear from Tables 2 and 3 that the necessary corrections
are not always negligiblé. How then is one to measure W, ? It is

Possible to develop apparatus(22) to measure the initial lack of flatness;
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however, WO should be thousht of not as the true physical imperfection
but as an empirical constant which will make eq (ll) fit the data. The
writers have cenducted extensive numerical analyses of their own plate-

deflection data and of the data published in the literature, by means of

the nonlinear least-squares programs(EB)

developed at the Numerical
Optimisation Centre, Hatfield Polytechnic, to find these empirical constants
from the point-of-view of Curve Fitting. If, for example, one takes
Schlack's data, ref. 1k, Table 1, ¥ = 0.0, then, for the results of

three of Schlack's runs (which plot so closely together on a superimposed
load=-deflection graph that it is almost impossible to distinguish between
the three sets of points) Wo varies apvproximately 25%. And as for the

uncertainty of boundary conditions discussed in Section 2, it is clear

that the effect on the post—critical curvature Al micht approach 20% .

If the values of the coefficients Al and A3 from Table 1, for
the simply-supported, uniaxially-loaded, square plate with Wo/h = 0.5
are introduced into egs (24), (25) and (26), the following gradients are
obtained for the sensitivity of PCF/Pc with resp.ct to the empirical

constants:

3(Po/P.) . ( -0.20 for stress-free lateral edges
3(Wo/h) B E -0.96 for straight lateral edges
B(PCF/PC) . E 0.0} for stress-free lateral edges
3 Ay B ( 0.40 for straight lateral edges
a(PGF/Pc) ) E 0.66  for stress—free lateral edges
R ( 0.96 for straight lateral edges

Clearly then it is necessary to have some information on the order
of magnitude of the imperfection before a decision can be made as to

whether or not PCF is a good measure of PG .
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Finaliy a brief comparison will be sketched with the results of the
Spencer plot(ll). This graphical procedure starts with eq (10) with the
right side truncated to one term only, leaving three empirical constants
(A » P, , W ) uninown. By means of the pivot point concept(ll)’(Zh),
one of these can be eliminated; the Spencer plot eliminates Al (thus
tending to eliminate the effect of boundary conditions provided they
remain constant during the test), and then predicts that there is a linear
relationship between two functions H, and H2 of (P,¥) such that a
graph of Hy vs. Hp will give a straight line whose slope and intercept
are measures respectively of Pc and Wo . The elimination of A
does not of course eliminate the effect of the boundary conditions on P -
The restrictions on the technique are that the imperfection must be small

compared to the maximum reliable deflection data, and it checks on this

assumption because it finds a measure of Wb .

For the data shown in the example at the end of section L, the

Spencer plot gave an accuracy of 2% .

For Schlack's data, ref. 1L, Table 1, ¥ = 0.0, average of three runs,

Schlack found PCF = 2890 1bs., the Southwell plot is so nonlinear that

a1),

it yields necthing and the Spencer plot found P, = 2850 1bs and

Wo = 0.03" . Unfortunately such apparently good correspondence between

PcF and Pc may hide unsuspected experimental errors. If, for example,
one examines the experimental data of some of the great pioneer work on
plate buckling done by the Hoff group at the Polytechnic Institute of
Brooklyn, e.g: Coan's specimen 28A, (ref. 13, fig. L), estimated
Wo/h = 0.05, one must agree that PCF occurs close to Pc . The

Southwell plot is not only curved but its slope changes sign. But the
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Spencer plot (coniined to P/Pc < 2.0 so that any possibility of
plasticity effects is ruled out), see fig. L and ref. 11 for method
and notation, shows up two, distinct, sharply-defined, separate,
linear portions giving normalized critical loads of about 0.97 and 1.11
respectively. This could have been caused by a change of boundary
conditions during the test. Even if one questions the pivot point
concept(zh) on which the Svencer plot is based and prefers some
statistical-based numerical analysis, the rormer procedure gives a
quick, direct, visual idea of where to start looking for a change in

boundary conditions.

If a change of bounaary conditions during a test is not sudden but
gradual, numerical procedures may not be capable of analyzing the
phenomenon by the application or statistical theory. PJuring a post-
pbuckling test conducted at University College London on a simply-
supported, square, uniaxially-loaded, spring-steel plate, PCF occured
undoubtedly at about 12 KN. A point-by-point anslysis or the data(ll)
using three pivot points revealed that, as the test was progressing,

Pc was effectively changing from 6 to 1L kN; i.e: the boundary

conditions were gradually changzing as the load was apuvlied.

It would appear that the pivot point concept(Zh)

is capable of
being extended to measure also the post-critical curvature, again by a

graphical procedure. Work is currently proceedinrg on this.
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6. CONCLUSIONS

The contraflexure method for plates can be used with very smooth data
to give a quick aporoximate guide to the critical load. It has been
shovn here that if the intrinsic imperfections in the plate and in the
test bounaary conditions are small, thz error incurred by the use of the
inflexion point will consequently be very small. However, as the
imperfection masmitudes increase, the error becomes greater ani may
become unacceptably large. Formulations are presented in this paper
from which, with a knowledge of the imperfection and of the perfect-plate
postbuckling characteristics, the magnitude of the error can be calculated.
However, an important feature is that if information regarding the
inperfection and boundary-condition parameters is required, a better
approach would be to use a variation of the Southwell m=thod knovm as

the Spencer plot.
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8. NOTATION

an (k) coefficient of sk in the expansion of wo

Ay itth coefficient in the series-expansion of W

c (as a subscript) pertaining to conditions at Pc

CF (as a subscript) pertaining to conditions at P,

D ER3/ (12 @ -»7))

E Young's modulus

fm m'th eigenmode of w

F Airy generalized plane stress iunction

[/ ( B/Py =1 + Wy/Wp )*]’

¥ Schlack's perrorated-plate diameter-ratio

h plate thickness

L ‘Wolmir operator

V4 Poissonts ratio

o] (as a suvscript) pertaining to initial conditions particularly

impertections

P total compressive edge load on a plate

Pc critical itoad = lowest eigenvalue load

PCF cont,rafJ:cxur? load = load at which contraflexure on a load:
deflection dilagram occurs

s perturpation parameter

T (as a subscript) refers to "total" usually derlection, as distinct
from ™iet?" detrlections (ursubscripted).

w net plate deflection as a tunction of (X,y)

wm amnlitude or the m'tk elsenmoce or w

Vo initial plate imperfection as a tunction or (x,y)

Wi v + W, = "botal® plate deflection as a functicn of (x,y)

w central detlection = value of W(X,y) at the centre of the plate

W, central initizl impeirtection = wo\x,y) at the centre of the plate

W W+ H, = total central deflection = wplX,y) at plate centre

X,¥ orthogonal coordinates in plane of undeilected plate boundary
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