990 research outputs found

    Regulatory networks and connected components of the neutral space

    Full text link
    The functioning of a living cell is largely determined by the structure of its regulatory network, comprising non-linear interactions between regulatory genes. An important factor for the stability and evolvability of such regulatory systems is neutrality - typically a large number of alternative network structures give rise to the necessary dynamics. Here we study the discretized regulatory dynamics of the yeast cell cycle [Li et al., PNAS, 2004] and the set of networks capable of reproducing it, which we call functional. Among these, the empirical yeast wildtype network is close to optimal with respect to sparse wiring. Under point mutations, which establish or delete single interactions, the neutral space of functional networks is fragmented into 4.7 * 10^8 components. One of the smaller ones contains the wildtype network. On average, functional networks reachable from the wildtype by mutations are sparser, have higher noise resilience and fewer fixed point attractors as compared with networks outside of this wildtype component.Comment: 6 pages, 5 figure

    Unravelling the Yeast Cell Cycle Using the TriGen Algorithm

    Get PDF
    Analyzing microarray data represents a computational challenge due to the characteristics of these data. Clustering techniques are widely applied to create groups of genes that exhibit a similar behavior under the conditions tested. Biclustering emerges as an improvement of classical clustering since it relaxes the constraints for grouping allowing genes to be evaluated only under a subset of the conditions and not under all of them. However, this technique is not appropriate for the analysis of temporal microarray data in which the genes are evaluated under certain conditions at several time points. In this paper, we present the results of applying the TriGen algorithm, a genetic algorithm that finds triclusters that take into account the experimental conditions and the time points, to the yeast cell cycle problem, where the goal is to identify all genes whose expression levels are regulated by the cell cycle

    Rank of Correlation Coefficient as a Comparable Measure for Biological Significance of Gene Coexpression

    Get PDF
    Information regarding gene coexpression is useful to predict gene function. Several databases have been constructed for gene coexpression in model organisms based on a large amount of publicly available gene expression data measured by GeneChip platforms. In these databases, Pearson's correlation coefficients (PCCs) of gene expression patterns are widely used as a measure of gene coexpression. Although the coexpression measure or GeneChip summarization method affects the performance of the gene coexpression database, previous studies for these calculation procedures were tested with only a small number of samples and a particular species. To evaluate the effectiveness of coexpression measures, assessments with large-scale microarray data are required. We first examined characteristics of PCC and found that the optimal PCC threshold to retrieve functionally related genes was affected by the method of gene expression database construction and the target gene function. In addition, we found that this problem could be overcome when we used correlation ranks instead of correlation values. This observation was evaluated by large-scale gene expression data for four species: Arabidopsis, human, mouse and rat

    The tissue microarray data exchange specification: A community-based, open source tool for sharing tissue microarray data

    Get PDF
    BACKGROUND: Tissue Microarrays (TMAs) allow researchers to examine hundreds of small tissue samples on a single glass slide. The information held in a single TMA slide may easily involve Gigabytes of data. To benefit from TMA technology, the scientific community needs an open source TMA data exchange specification that will convey all of the data in a TMA experiment in a format that is understandable to both humans and computers. A data exchange specification for TMAs allows researchers to submit their data to journals and to public data repositories and to share or merge data from different laboratories. In May 2001, the Association of Pathology Informatics (API) hosted the first in a series of four workshops, co-sponsored by the National Cancer Institute, to develop an open, community-supported TMA data exchange specification. METHODS: A draft tissue microarray data exchange specification was developed through workshop meetings. The first workshop confirmed community support for the effort and urged the creation of an open XML-based specification. This was to evolve in steps with approval for each step coming from the stakeholders in the user community during open workshops. By the fourth workshop, held October, 2002, a set of Common Data Elements (CDEs) was established as well as a basic strategy for organizing TMA data in self-describing XML documents. RESULTS: The TMA data exchange specification is a well-formed XML document with four required sections: 1) Header, containing the specification Dublin Core identifiers, 2) Block, describing the paraffin-embedded array of tissues, 3)Slide, describing the glass slides produced from the Block, and 4) Core, containing all data related to the individual tissue samples contained in the array. Eighty CDEs, conforming to the ISO-11179 specification for data elements constitute XML tags used in the TMA data exchange specification. A set of six simple semantic rules describe the complete data exchange specification. Anyone using the data exchange specification can validate their TMA files using a software implementation written in Perl and distributed as a supplemental file with this publication. CONCLUSION: The TMA data exchange specification is now available in a draft form with community-approved Common Data Elements and a community-approved general file format and data structure. The specification can be freely used by the scientific community. Efforts sponsored by the Association for Pathology Informatics to refine the draft TMA data exchange specification are expected to continue for at least two more years. The interested public is invited to participate in these open efforts. Information on future workshops will be posted at (API we site)

    Beyond element-wise interactions: identifying complex interactions in biological processes

    Get PDF
    Background: Biological processes typically involve the interactions of a number of elements (genes, cells) acting on each others. Such processes are often modelled as networks whose nodes are the elements in question and edges pairwise relations between them (transcription, inhibition). But more often than not, elements actually work cooperatively or competitively to achieve a task. Or an element can act on the interaction between two others, as in the case of an enzyme controlling a reaction rate. We call “complex” these types of interaction and propose ways to identify them from time-series observations. Methodology: We use Granger Causality, a measure of the interaction between two signals, to characterize the influence of an enzyme on a reaction rate. We extend its traditional formulation to the case of multi-dimensional signals in order to capture group interactions, and not only element interactions. Our method is extensively tested on simulated data and applied to three biological datasets: microarray data of the Saccharomyces cerevisiae yeast, local field potential recordings of two brain areas and a metabolic reaction. Conclusions: Our results demonstrate that complex Granger causality can reveal new types of relation between signals and is particularly suited to biological data. Our approach raises some fundamental issues of the systems biology approach since finding all complex causalities (interactions) is an NP hard problem

    Paradigm of tunable clustering using binarization of consensus partition matrices (Bi-CoPaM) for gene discovery

    Get PDF
    Copyright @ 2013 Abu-Jamous et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Clustering analysis has a growing role in the study of co-expressed genes for gene discovery. Conventional binary and fuzzy clustering do not embrace the biological reality that some genes may be irrelevant for a problem and not be assigned to a cluster, while other genes may participate in several biological functions and should simultaneously belong to multiple clusters. Also, these algorithms cannot generate tight clusters that focus on their cores or wide clusters that overlap and contain all possibly relevant genes. In this paper, a new clustering paradigm is proposed. In this paradigm, all three eventualities of a gene being exclusively assigned to a single cluster, being assigned to multiple clusters, and being not assigned to any cluster are possible. These possibilities are realised through the primary novelty of the introduction of tunable binarization techniques. Results from multiple clustering experiments are aggregated to generate one fuzzy consensus partition matrix (CoPaM), which is then binarized to obtain the final binary partitions. This is referred to as Binarization of Consensus Partition Matrices (Bi-CoPaM). The method has been tested with a set of synthetic datasets and a set of five real yeast cell-cycle datasets. The results demonstrate its validity in generating relevant tight, wide, and complementary clusters that can meet requirements of different gene discovery studies.National Institute for Health Researc

    SMART: Unique splitting-while-merging framework for gene clustering

    Get PDF
    Copyright @ 2014 Fa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Successful clustering algorithms are highly dependent on parameter settings. The clustering performance degrades significantly unless parameters are properly set, and yet, it is difficult to set these parameters a priori. To address this issue, in this paper, we propose a unique splitting-while-merging clustering framework, named “splitting merging awareness tactics” (SMART), which does not require any a priori knowledge of either the number of clusters or even the possible range of this number. Unlike existing self-splitting algorithms, which over-cluster the dataset to a large number of clusters and then merge some similar clusters, our framework has the ability to split and merge clusters automatically during the process and produces the the most reliable clustering results, by intrinsically integrating many clustering techniques and tasks. The SMART framework is implemented with two distinct clustering paradigms in two algorithms: competitive learning and finite mixture model. Nevertheless, within the proposed SMART framework, many other algorithms can be derived for different clustering paradigms. The minimum message length algorithm is integrated into the framework as the clustering selection criterion. The usefulness of the SMART framework and its algorithms is tested in demonstration datasets and simulated gene expression datasets. Moreover, two real microarray gene expression datasets are studied using this approach. Based on the performance of many metrics, all numerical results show that SMART is superior to compared existing self-splitting algorithms and traditional algorithms. Three main properties of the proposed SMART framework are summarized as: (1) needing no parameters dependent on the respective dataset or a priori knowledge about the datasets, (2) extendible to many different applications, (3) offering superior performance compared with counterpart algorithms.National Institute for Health Researc

    Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling.

    Get PDF
    Signaling networks downstream of receptor tyrosine kinases are among the most extensively studied biological networks, but new approaches are needed to elucidate causal relationships between network components and understand how such relationships are influenced by biological context and disease. Here, we investigate the context specificity of signaling networks within a causal conceptual framework using reverse-phase protein array time-course assays and network analysis approaches. We focus on a well-defined set of signaling proteins profiled under inhibition with five kinase inhibitors in 32 contexts: four breast cancer cell lines (MCF7, UACC812, BT20, and BT549) under eight stimulus conditions. The data, spanning multiple pathways and comprising ∼70,000 phosphoprotein and ∼260,000 protein measurements, provide a wealth of testable, context-specific hypotheses, several of which we experimentally validate. Furthermore, the data provide a unique resource for computational methods development, permitting empirical assessment of causal network learning in a complex, mammalian setting.This work was supported by the National Institutes of Health National Cancer Institute (grant U54 CA112970 to J.W.G., G.B.M., S.M., and P.T.S.). S.M.H. and S.M. were supported by the UK Medical Research Council (unit program numbers MC_UP_1302/1 and MC_UP_1302/3). S.M. was a recipient of a Royal Society Wolfson Research Merit Award. The MD Anderson Cancer Center RPPA Core Facility is funded by the National Institutes of Health National Cancer Institute (Cancer Center Core Grant CA16672)

    TableButler – a Windows based tool for processing large data tables generated with high-throughput methods

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-throughput "omics" based data analysis play emerging roles in life sciences and molecular diagnostics. This emphasizes the urgent need for user-friendly windows-based software interfaces that could process the diversity of large tab-delimited raw data files generated by these methods. Depending on the study, dozens to hundreds of these data tables are generated. Before the actual statistical or cluster analysis, these data tables have to be combined and merged to expression matrices (e.g., in case of gene expression analysis). Gene annotations as well as information concerning the samples analyzed may be appended, renewed or extended. Often additional data values shall be computed or certain features must be filtered out.</p> <p>Results</p> <p>In order to perform these tasks, we have developed a Microsoft Windows based application, "<b><it>TableButler</it></b>", which allows biologists or clinicians without substantial bioinformatics background to perform a plethora of data processing tasks required to analyze the large-scale data.</p> <p>Conclusion</p> <p><b><it>TableButler </it></b>is a monolithic Windows application. It is implemented to handle, join and preprocess large tab delimited ASCII data files. The intuitive user interface enables scientists (e.g. biologists, clinicians or others) to setup workflows for their specific problems by simple drag-and drop like operations.</p> <p>For more details about <b><it>TableButler</it></b>, visit <url>http://www.OncoExpress.org/software/tablebutler</url>.</p
    corecore