34 research outputs found

    IS-03 Practical Aspects of Antibiotic Stewardship in Animal Production

    Get PDF
    Antimicrobial resistance (AMR) is emerging and is a threat for human and animal health. This increasing resistance results into treatment failures and increased mortality in humans and animals. If there is no action to reduce antimicrobial use (AMU), it is forecasted that the number of people dying due to AMR will increase considerably in the near future. AMU in animals poses a potential risk for public health as it contributes to the selection and spread of AMR which can disseminate to humans. Therefore, at global level WHO, FAO and OIE combined efforts in a such called One Health approach to minimize the public health impact of AMR associated with AMU in farm animals. The Global Action Plan on antimicrobial resistance (GAP) has been adopted by the World Health Assembly in 2015. This plan contains five strategic objectives. WHO urged all member states to develop a National Action Plan in line with the five objectives of the GAP, and with a One Health approach. Indonesia has submitted the National Action Plan on Antimicrobial Resistance 2017-2019 in the Library of National Action Plans of WHO.Although it is not clear to what level AMU in animal production contributes to the AMR problem humans, there is a worldwide urge to reduce AMU in animal production to a minimum to protect human health. The basis of this so-called ‘antimicrobial stewardship’ is focusing on (preventive) measures which enable animals to remain healthy and thus take away the need for antimicrobial treatment. Another pillar of stewardship is limiting and strictly regulating the use of so-called ‘’critically important antimicrobials for human medicine’’, like fluoroquinolones. It can be difficult to change AMU practices which have become habits for farmers and veterinarians; therefore specific triggers are required. In the Netherlands the total therapeutic AMU (in mass sold) in farm animals doubled between 1990 and 2007; parallel to the EU-ban of antimicrobial growth promotors which were completely phased out by 2006. From 2005 onwards, several events triggered a series of measures and initiatives to reduce AMU in livestock with almost 70%. This reduction was followed by reduced AMR levels in livestock. Some key success factors were: clear reduction targets defined by the government, having full transparency on antimicrobial prescription and usage, the existence of a surveillance system for AMR, and a close collaboration of all stakeholders and a shared goal. Although specific contexts differ between countries and production systems, tailored approaches taking into account specific contexts and stakeholders can be effective in responsible use of antimicrobials

    IS-03 Practical Aspects of Antibiotic Stewardship in Animal Production

    Get PDF
    Antimicrobial resistance (AMR) is emerging and is a threat for human and animal health. This increasing resistance results into treatment failures and increased mortality in humans and animals. If there is no action to reduce antimicrobial use (AMU), it is forecasted that the number of people dying due to AMR will increase considerably in the near future. AMU in animals poses a potential risk for public health as it contributes to the selection and spread of AMR which can disseminate to humans. Therefore, at global level WHO, FAO and OIE combined efforts in a such called One Health approach to minimize the public health impact of AMR associated with AMU in farm animals. The Global Action Plan on antimicrobial resistance (GAP) has been adopted by the World Health Assembly in 2015. This plan contains five strategic objectives. WHO urged all member states to develop a National Action Plan in line with the five objectives of the GAP, and with a One Health approach. Indonesia has submitted the National Action Plan on Antimicrobial Resistance 2017-2019 in the Library of National Action Plans of WHO.Although it is not clear to what level AMU in animal production contributes to the AMR problem humans, there is a worldwide urge to reduce AMU in animal production to a minimum to protect human health. The basis of this so-called ‘antimicrobial stewardship’ is focusing on (preventive) measures which enable animals to remain healthy and thus take away the need for antimicrobial treatment. Another pillar of stewardship is limiting and strictly regulating the use of so-called ‘’critically important antimicrobials for human medicine’’, like fluoroquinolones. It can be difficult to change AMU practices which have become habits for farmers and veterinarians; therefore specific triggers are required. In the Netherlands the total therapeutic AMU (in mass sold) in farm animals doubled between 1990 and 2007; parallel to the EU-ban of antimicrobial growth promotors which were completely phased out by 2006. From 2005 onwards, several events triggered a series of measures and initiatives to reduce AMU in livestock with almost 70%. This reduction was followed by reduced AMR levels in livestock. Some key success factors were: clear reduction targets defined by the government, having full transparency on antimicrobial prescription and usage, the existence of a surveillance system for AMR, and a close collaboration of all stakeholders and a shared goal. Although specific contexts differ between countries and production systems, tailored approaches taking into account specific contexts and stakeholders can be effective in responsible use of antimicrobials

    The opinions of farm animal veterinarians in Ireland on antibiotic use and their role in antimicrobial stewardship

    Get PDF
    BACKGROUND: Antibiotic use and resistance in animal production are a concern to public health, and there is an urgent need to reduce antibiotic use in farm animals. To prevent blame shifting, professionals from human medicine, animal medicine and environmental backgrounds must collaborate to tackle this issue. Veterinarians are typically responsible for overseeing and prescribing antibiotic use in animals. There are currently no available studies on the opinions of Irish farm animal veterinarians on antibiotic use, reduction opportunities and their relationships with farmers. A digital survey was developed and sent out to Irish farm animal veterinarians. This paper presents the results of a cross-sectional study of Irish farm animal veterinarians' attitudes towards antimicrobial stewardship, their prescribing behaviours, antibiotic reduction opportunities and their attitudes for the future of antibiotic use. The veterinarian-farmer relationship is examined and potential interventions to reduce antibiotic use on farms are identified. RESULTS: In total, 114 complete questionnaires were received, representing approximately 11 per cent of all farm animal veterinarians in Ireland. Respondents were aware of the problem of antibiotic resistance and recognise their role in the fight against it. They realise what actions they must take to reduce antibiotic use and identify barriers that prevent their farmer clients from implementing their advice. Many of them say that they can reduce antibiotic use on farms in the future, but some remain doubtful. There was no statistical difference between veterinarians that had less experience working than those that had more experience in their attitudes towards future reduction in antibiotic use. CONCLUSION: Most of the respondents seek to use antibiotics as judiciously as they can. The majority agree that antibiotic overuse is the main contributor to antibiotic resistance. Possible solutions to reduce antibiotic use include the development of antibiotic treatment guidelines, assigning one unique practice to each farm and compulsory CPD (Continuous Professional Development) courses

    The opinions of farm animal veterinarians in Ireland on antibiotic use and their role in antimicrobial stewardship

    Get PDF
    Background: Antibiotic use and resistance in animal production are a concern to public health, and there is an urgent need to reduce antibiotic use in farm animals. To prevent blame shifting, professionals from human medicine, animal medicine and environmental backgrounds must collaborate to tackle this issue. Veterinarians are typically responsible for overseeing and prescribing antibiotic use in animals. There are currently no available studies on the opinions of Irish farm animal veterinarians on antibiotic use, reduction opportunities and their relationships with farmers. A digital survey was developed and sent out to Irish farm animal veterinarians. This paper presents the results of a cross-sectional study of Irish farm animal veterinarians’ attitudes towards antimicrobial stewardship, their prescribing behaviours, antibiotic reduction opportunities and their attitudes for the future of antibiotic use. The veterinarian-farmer relationship is examined and potential interventions to reduce antibiotic use on farms are identified. Results: In total, 114 complete questionnaires were received, representing approximately 11 per cent of all farm animal veterinarians in Ireland. Respondents were aware of the problem of antibiotic resistance and recognise their role in the fight against it. They realise what actions they must take to reduce antibiotic use and identify barriers that prevent their farmer clients from implementing their advice. Many of them say that they can reduce antibiotic use on farms in the future, but some remain doubtful. There was no statistical difference between veterinarians that had less experience working than those that had more experience in their attitudes towards future reduction in antibiotic use. Conclusion: Most of the respondents seek to use antibiotics as judiciously as they can. The majority agree that antibiotic overuse is the main contributor to antibiotic resistance. Possible solutions to reduce antibiotic use include the development of antibiotic treatment guidelines, assigning one unique practice to each farm and compulsory CPD (Continuous Professional Development) courses.Department of Agriculture, Food and the Marin

    Why Veterinarians (Do Not) Adhere to the Clinical Practice Streptococcus suis in Weaned Pigs Guideline: A Qualitative Study

    Get PDF
    The Netherlands has been very successful in the last decade in reducing antimicrobial use in animals. On about a quarter of farms, antimicrobial use in weaned pigs remains relatively high. As Streptococcus suis ( S. suis) infections are responsible for a high consumption of antimicrobials, a specific veterinary guideline to control S. suis was developed, but seemed to be poorly adopted by veterinarians. Guided by the theoretical domains framework, the aim of this study was to identify determinants influencing veterinarians' adherence to this guideline. We interviewed 13 pig veterinarians. Interviewees described multiple approaches to managing S. suis problems and adherence to the guideline. Mentioned determinants could be categorized into 12 theoretical domains. The following six domains were mentioned in all interviews: knowledge, skills, beliefs about capabilities, beliefs about consequences, social influences, and environmental context and resources. The insights derived from this study are relevant for understanding factors influencing veterinarians' adoption of scientific evidence and guidelines and can be used to develop evidence-based implementation strategies for veterinary guidelines

    Invited review : Selective use of antimicrobials in dairy cattle at drying-off

    Get PDF
    Administering intramammary antimicrobials to all mammary quarters of dairy cows at drying-off [i.e., blanket dry cow therapy (BDCT)] has been a mainstay of mastitis prevention and control. However, as udder health has considerably improved over recent decades with reductions in intramammary infection prevalence at drying-off and the introduction of teat sealants, BDCT may no longer be necessary on all dairy farms, thereby supporting antimicrobial stewardship efforts. This narrative review summarizes available literature regarding current dry cow therapy practices and associ-ated impacts of selective dry cow therapy (SDCT) on udder health, milk production, economics, antimicro-bial use, and antimicrobial resistance. Various methods to identify infections at drying-off that could benefit from antimicrobial treatment are described for select-ing cows or mammary quarters for treatment, includ-ing utilizing somatic cell count thresholds, pathogen identification, previous clinical mastitis history, or a combination of criteria. Selection methods may be enacted at the herd, cow, or quarter levels. Producers' and veterinarians' motivations for antimicrobial use are discussed. Based on review findings, SDCT can be ad-opted without negative consequences for udder health and milk production, and concurrent teat sealant use is recommended, especially in udder quarters receiving no intramammary antimicrobials. Furthermore, herd selection should be considered for SDCT implementa-tion in addition to cow or quarter selection, as BDCT may still be temporarily necessary in some herds for optimal mastitis control. Costs and benefits of SDCT vary among herds, whereas impacts on antimicrobial resistance remain unclear. In summary, SDCT is a vi-able management option for maintaining udder health and milk production while improving antimicrobial stewardship in the dairy industry.Peer reviewe

    Invited review : Selective use of antimicrobials in dairy cattle at drying-off

    Get PDF
    Administering intramammary antimicrobials to all mammary quarters of dairy cows at drying-off [i.e., blanket dry cow therapy (BDCT)] has been a mainstay of mastitis prevention and control. However, as udder health has considerably improved over recent decades with reductions in intramammary infection prevalence at drying-off and the introduction of teat sealants, BDCT may no longer be necessary on all dairy farms, thereby supporting antimicrobial stewardship efforts. This narrative review summarizes available literature regarding current dry cow therapy practices and associ-ated impacts of selective dry cow therapy (SDCT) on udder health, milk production, economics, antimicro-bial use, and antimicrobial resistance. Various methods to identify infections at drying-off that could benefit from antimicrobial treatment are described for select-ing cows or mammary quarters for treatment, includ-ing utilizing somatic cell count thresholds, pathogen identification, previous clinical mastitis history, or a combination of criteria. Selection methods may be enacted at the herd, cow, or quarter levels. Producers' and veterinarians' motivations for antimicrobial use are discussed. Based on review findings, SDCT can be ad-opted without negative consequences for udder health and milk production, and concurrent teat sealant use is recommended, especially in udder quarters receiving no intramammary antimicrobials. Furthermore, herd selection should be considered for SDCT implementa-tion in addition to cow or quarter selection, as BDCT may still be temporarily necessary in some herds for optimal mastitis control. Costs and benefits of SDCT vary among herds, whereas impacts on antimicrobial resistance remain unclear. In summary, SDCT is a vi-able management option for maintaining udder health and milk production while improving antimicrobial stewardship in the dairy industry.Peer reviewe

    The comparison and use of tools for quantification of antimicrobial use in Indonesian broiler farms

    Get PDF
    INTRODUCTION: Indonesia has a large broiler industry with extensive antimicrobial use (AMU) according to empirical evidence. However, there are no quantitative data of on-farm AMU. Quantification of AMU at farm level is crucial to guide interventions on antimicrobial stewardship (AMS). The objective of this study was to compare on-farm AMU monitoring methods, to assess which monitoring method is best suited to gain insight in the quantitative AMU at farm level in medium-scale Indonesian broiler farms. METHOD: AMU was calculated using four different indicators-mg/PCU (mass-based), TF UDDindo (Treatment Frequency of Used Daily Dose, dose-based), TF DDDvet (Treatment Frequency of Defined Daily Dose, dose-based), and TF count - based (count-based)-for the total AMU of 98 production cycles with an average length of 30 days. RESULTS: Broilers were exposed to an average of 10 days of antimicrobial treatments per production cycle, whereas 60.8% of the antimicrobials belonged to the Highest Priority Critically Important Antimicrobials (HPCIAs). For each pair of indicators, the Spearman rank correlation coefficient was calculated to assess if the production cycles were ranked consistently in increasing AMU across the different indicators. The correlation varied between 0.4 and 0.8. DISCUSSION: This study illustrates the considerable difference in the ranking of AMU between the different indicators. In a setting comparable to medium-scale broiler farms in Indonesia, where resources are scarce and there is no professional oversight, the TF count - based method is best suitable. Before implementing an AMU monitoring method, careful consideration of the use-indicators is paramount to achieve fair benchmarking

    Potential of ESBL-producing Escherichia coli selection in bovine feces after intramammary administration of first generation cephalosporins using in vitro experiments

    Get PDF
    Abstract: Selection and spread of Extended Spectrum Beta-Lactamase (ESBL) -producing Enterobacteriaceae within animal production systems and potential spillover to humans is a major concern. Intramammary treatment of dairy cows with first-generation cephalosporins is a common practice and potentially selects for ESBL-producing Enterobacteriaceae, although it is unknown whether this really occurs in the bovine fecal environment. We aimed to study the potential effects of intramammary application of cephapirin (CP) and cefalonium (CL) to select for ESBL-producing Escherichia coli in the intestinal content of treated dairy cows and in manure slurry, using in vitro competition experiments with ESBL and non-ESBL E. coli isolates. No selection of ESBL-producing E. coli was observed at or below concentrations of 0.8 ”g/ml and 4.0 ”g/ml in bovine feces for CP and CL, respectively, and at or below 8.0 ”g/ml and 4.0 ”g/ml, respectively, in manure slurry. We calculated that the maximum concentration of CP and CL after intramammary treatment with commercial products will not exceed 0.29 ”g/ml in feces and 0.03 ”g/ml in manure slurry. Therefore, the results of this study did not find evidence supporting the selection of ESBL-producing E. coli in bovine feces or in manure slurry after intramammary use of commercial CP or CL-containing products

    Potential of ESBL-producing Escherichia coli selection in bovine feces after intramammary administration of first generation cephalosporins using in vitro experiments

    Get PDF
    Selection and spread of Extended Spectrum Beta-Lactamase (ESBL) -producing Enterobacteriaceae within animal production systems and potential spillover to humans is a major concern. Intramammary treatment of dairy cows with first-generation cephalosporins is a common practice and potentially selects for ESBL-producing Enterobacteriaceae, although it is unknown whether this really occurs in the bovine fecal environment. We aimed to study the potential effects of intramammary application of cephapirin (CP) and cefalonium (CL) to select for ESBL-producing Escherichia coli in the intestinal content of treated dairy cows and in manure slurry, using in vitro competition experiments with ESBL and non-ESBL E. coli isolates. No selection of ESBL-producing E. coli was observed at or below concentrations of 0.8 ”g/ml and 4.0 ”g/ml in bovine feces for CP and CL, respectively, and at or below 8.0 ”g/ml and 4.0 ”g/ml, respectively, in manure slurry. We calculated that the maximum concentration of CP and CL after intramammary treatment with commercial products will not exceed 0.29 ”g/ml in feces and 0.03 ”g/ml in manure slurry. Therefore, the results of this study did not find evidence supporting the selection of ESBL-producing E. coli in bovine feces or in manure slurry after intramammary use of commercial CP or CL-containing products
    corecore