27 research outputs found

    Making Connections: A Handbook for Effective Formal Mentoring Programs in Academia

    Get PDF
    This book, Making Connections: A Handbook for Effective Formal Mentoring Programs in Academia, makes a unique and needed contribution to the mentoring field as it focuses solely on mentoring in academia. This handbook is a collaborative institutional effort between Utah State University’s (USU) Empowering Teaching Open Access Book Series and the Mentoring Institute at the University of New Mexico (UNM). This book is available through (a) an e-book through Pressbooks, (b) a downloadable PDF version on USU’s Open Access Book Series website), and (c) a print version available for purchase on the USU Empower Teaching Open Access page, and on Amazon

    Sources, composition, and export of particulate organic matter across British estuaries

    Get PDF
    Estuaries receive and process a large amount of particulate organic carbon (POC) prior to its export into coastal waters. Studying the origin of this POC is key to understanding the fate of POC and the role of estuaries in the global carbon cycle. Here, we evaluated the concentrations of POC, as well as particulate organic nitrogen (PON), and used stable carbon and nitrogen isotopes to assess their sources across 13 contrasting British estuaries during five different sampling campaigns over 1 year. We found a high variability in POC and PON concentrations across the salinity gradient, reflecting inputs, and losses of organic material within the estuaries. Catchment land cover appeared to influence the contribution of POC to the total organic carbon flux from the estuary to coastal waters, with POC contributions >36% in estuaries draining catchments with a high percentage of urban/suburban land, and <11% in estuaries draining catchments with a high peatland cover. There was no seasonal pattern in the isotopic composition of POC and PON, suggesting similar sources for each estuary over time. Carbon isotopic ratios were depleted (−26.7 ± 0.42‰, average ± sd) at the lowest salinity waters, indicating mainly terrigenous POC (TPOC). Applying a two-source mixing model, we observed high variability in the contribution of TPOC at the highest salinity waters between estuaries, with a median value of 57%. Our results indicate a large transport of terrigenous organic carbon into coastal waters, where it may be buried, remineralized, or transported offshore

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p&lt;0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p&lt;0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p&lt;0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP &gt;5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Cultivating a Cycle of Trust with Diverse Communities in Practice-Based Research: A Report From PRIME Net

    No full text
    PURPOSE: Practice-based research networks (PBRNs) are increasingly seen as important vehicles to translate research into practice, although less is known about the process of engaging diverse communities in PBRN research. The objective of this study was to identify strategies for successfully recruiting and retaining diverse racial/ethnic communities into PBRN research studies. METHODS: This collaborative, multisite study engaged 5 of the 8 networks of the PRImary care MultiEthnic Network (PRIME Net) consortium that conducts research with traditionally underrepresented/underserved populations. We used a sequential, qualitative research design. We first conducted 1 key informant interview with each of 24 researchers experienced in recruiting research participants from 5 racial/ethnic communities (African American, Arab/Chaldean, Chinese, Hispanic, and Native American). Subsequently, we conducted 18 focus groups with 172 persons from these communities. RESULTS: Participants’ comments indicated that successful recruitment and retention of underrepresented populations in PBRN studies is linked to the overall research process. This process, which we termed the cycle of trust, entailed developing and sustaining relationships of trust during 4 interrelated stages: before the study, during study recruitment, throughout study conduct, and after study completion. Participants identified a set of flexible strategies within each stage and called for close engagement with clinic and community partners. CONCLUSIONS: Our participants suggest that approaches to research that lay a foundation of trust, demonstrate respect for community members, and extend beyond the enrollment and data collection phases are essential to enhance the participation of diverse populations in PBRN research. These findings offer the PBRN community a guide toward achieving this important goal

    Road Map to Safe and Well-Designed De-escalation Trials of Systemic Adjuvant Therapy for Solid Tumors.

    No full text
    An important challenge in the field of cancer is finding the balance between delivering effective treatments and avoiding adverse effects and financial toxicity caused by innovative, yet expensive, drugs. To address this, several treatment de-escalation trials have been conducted, but only a few of these have provided clear answers. A few trials had poor accrual or had design flaws that led to conflicting results. Members of the Breast International Group (BIG) and North American Breast Cancer Group (NABCG) believe the way forward is to understand the lessons from these trials and listen more carefully to what truly matters to our patients. We reviewed several adjuvant trials of different cancer types and developed a road map for improving the design and implementation of future de-escalation trials. The road map incorporates patients' insights obtained through focused group discussions across the BIG-NABCG networks. Considerations for the development of de-escalation trials for systemic adjuvant treatment, including noninferiority trial design, choice of end points, and prioritization of a patient's perspectives, are presented in this consensus article
    corecore