86 research outputs found

    The Green, Green Grass of Home: an archaeo-ecological approach to pastoralist settlement in central Kenya

    Get PDF
    © 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This paper considers the ecological residues of pastoralist occupation at the site of Maili Sita in Laikipia, central Kenya, drawing links with the archaeological record so as to contribute a fresh approach to the ephemeral settlement sites of mobile herding communities, a methodological aspect of African archaeology that remains problematic. Variations in the geochemical and micromorphological composition of soils along transects across the site are compared with vegetation distributions and satellite imagery to propose an occupation pattern not dissimilar to contemporary Cushitic-speaking groups further north. We argue that Maili Sita exemplifies the broad migratory and cultural exchange networks in place during the mid- to late second millennium AD, with pastoralist occupants who were both physically and culturally mobile.British Academy (2002-5 Funding) European Union - Marie Curie Initiatives (EXT grant 2007-11

    UV and EUV Instruments

    Full text link
    We describe telescopes and instruments that were developed and used for astronomical research in the ultraviolet (UV) and extreme ultraviolet (EUV) regions of the electromagnetic spectrum. The wavelength ranges covered by these bands are not uniquely defined. We use the following convention here: The EUV and UV span the regions ~100-912 and 912-3000 Angstroem respectively. The limitation between both ranges is a natural choice, because the hydrogen Lyman absorption edge is located at 912 Angstroem. At smaller wavelengths, astronomical sources are strongly absorbed by the interstellar medium. It also marks a technical limit, because telescopes and instruments are of different design. In the EUV range, the technology is strongly related to that utilized in X-ray astronomy, while in the UV range the instruments in many cases have their roots in optical astronomy. We will, therefore, describe the UV and EUV instruments in appropriate conciseness and refer to the respective chapters of this volume for more technical details.Comment: To appear in: Landolt-Boernstein, New Series VI/4A, Astronomy, Astrophysics, and Cosmology; Instruments and Methods, ed. J.E. Truemper, Springer-Verlag, Berlin, 201

    Biometric conversion factors as a unifying platform for comparative assessment of invasive freshwater bivalves

    Get PDF
    Invasive bivalves continue to spread and negatively impact freshwater ecosystems worldwide. As different metrics for body size and biomass are frequently used within the literature to standardise bivalve-related ecological impacts (e.g. respiration and filtration rates), the lack of broadly applicable conversion equations currently hinders reliable comparison across bivalve populations. To facilitate improved comparative assessment among studies originating from disparate geographical locations, we report body size and biomass conversion equations for six invasive freshwater bivalves (or species complex members) worldwide: Corbicula fluminea, C. largillierti, Dreissena bugensis, D. polymorpha, Limnoperna fortunei and Sinanodonta woodiana, and tested the reliability (i.e. precision and accuracy) of these equations. Body size (length, width and height) and biomass metrics of living-weight (LW), wet-weight (WW), dry-weight (DW), dry shell-weight (SW), shell free dry-weight (SFDW) and ash-free dry-weight (AFDW) were collected from a total of 44 bivalve populations located in Asia, the Americas and Europe. Relationships between body size and individual biomass metrics, as well as proportional weight-to-weight conversion factors, were determined. For most species, although inherent variation existed between sampled populations, body size directional measurements were found to be good predictors of all biomass metrics (e.g. length to LW, WW, SW or DW: R2 = 0.82–0.96), with moderate to high accuracy for mean absolute error (MAE): ±9.14%–24.19%. Similarly, narrow 95% confidence limits and low MAE were observed for most proportional biomass relationships, indicating high reliability for the calculated conversion factors (e.g. LW to AFDW; CI range: 0.7–2.0, MAE: ±0.7%–2.0%). Synthesis and applications. Our derived biomass prediction equations can be used to rapidly estimate the biologically active biomass of the assessed species, based on simpler biomass or body size measurements for a wide range of situations globally. This allows for the calculation of approximate average indicators that, when combined with density data, can be used to estimate biomass per geographical unit-area and contribute to quantification of population-level effects. These general equations will support meta-analyses, and allow for comparative assessment of historic and contemporary data. Overall, these equations will enable conservation managers to better understand and predict ecological impacts of these bivalves. © 2021 The Authors. Journal of Applied Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Societ

    The governance of co-operatives and mutual associations: a paradox perspective

    Get PDF
    This paper presents a new theoretical framework for understanding the governance of co-operative and mutual organisations. The theoretical literature on the governance of co-operatives is relatively undeveloped in comparison with that on corporate governance. The paper briefly reviews some of the main theoretical perspectives on corporate governance and discusses how they can be usefully extended to throw light on the governance of co-operatives and mutuals. However, taken individually these different theories are rather one dimensional, only illuminating a particular aspect of the board's role. This has lead to calls for a new conceptual framework that can help integrate the insights of these different theories. The paper argues that a paradox perspective offers a promising way forward. Contrasting the different theoretical perspectives highlights some of the important paradoxes, ambiguities and tensions that boards face

    A study of the impact of sex and gender upon the perceptions and responses of science teachers

    No full text
    SIGLEAvailable from British Library Lending Division - LD:D57030/85 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Uncertainty in invasive alien species listing

    No full text
    Lists of invasive alien species (IAS) are essential for preventing, controlling, and reporting on the state of biological invasions. However, these lists suffer from a range of errors, with serious consequences for their use in science, policy, and management. Here we (1) collated and classified errors in IAS listing using a taxonomy of uncertainty; and (2) estimated the size of these errors using data from a completed listing exercise, with the purpose of better understanding, communicating, and dealing with them. Ten errors were identified. Most result from a lack of knowledge or measurement error (epistemic uncertainty), although two were a result of context dependence and vagueness (linguistic uncertainty). Estimates of the size of the effects of these errors were substantial in a number of cases and unknown in others. Most errors, and those with the largest estimated effect, result in underestimates of IAS numbers. However, there are a number of errors where the size and direction of the effect remains poorly understood. The effect of differences in opinion between specialists is potentially large, particularly for data-poor taxa and regions, and does not have a clearly directional or consistent effect on the size and composition of IAS lists. Five tactics emerged as important for reducing uncertainty in IAS lists, and while uncertainty will never be removed entirely, these approaches will significantly improve the transparency, repeatability, and comparability of IAS lists. Understanding the errors and uncertainties that occur during the process of listing invasive species, as well as the potential size and nature of their effects on IAS lists, is key to improving the value of these lists for governments, management agencies, and conservationists. Such understanding is increasingly important given positive trends in biological invasion and the associated risks to biodiversity and biosecurity. © 2012 by the Ecological Society of America
    corecore