71 research outputs found

    Ein Testmustergenerator unter 16-wertiger Logik mit variabler Fehlermodellierung

    Get PDF
    Die Mikroelektronik hält zunehmend Einzug in Bereiche unseres täglichen Lebens. Die Abhängigkeit des Menschen von der Technik wächst ständig, und damit kommt der Frage nach deren Zuverlässigkeit eine steigende Bedeutung zu. Diese Frage nach der Zuverlässigkeit stellt sich insbesondere bei der Fertigung hochintegrierter Schaltkreise. Leider ist die Chipfertigung, sich immer an der Grenze des technisch machbaren bewegend, sehr fehleranfällig. Defektraten von über 40% sind im VLSI Bereich keine Seltenheit. Man benötigt darum unbedingt leistungsfähige Verfahren, die gefertigte Chips auf ihre Korrektheit überprüfen, sie also testen. Welche Bedeutung der Fertigungstest in der Chipfertigung einnimmt, zeigt eine Schätzung von Milne [Mil85], nach der heute mehr als 25% der Produktkosten im VLSI Bereich auf den Testvorgang entfallen

    A realistic two-lane traffic model for highway traffic

    Full text link
    A two-lane extension of a recently proposed cellular automaton model for traffic flow is discussed. The analysis focuses on the reproduction of the lane usage inversion and the density dependence of the number of lane changes. It is shown that the single-lane dynamics can be extended to the two-lane case without changing the basic properties of the model which are known to be in good agreement with empirical single-vehicle data. Therefore it is possible to reproduce various empirically observed two-lane phenomena, like the synchronization of the lanes, without fine-tuning of the model parameters

    Estimating Acceleration and Lane-Changing Dynamics Based on NGSIM Trajectory Data

    Full text link
    The NGSIM trajectory data sets provide longitudinal and lateral positional information for all vehicles in certain spatiotemporal regions. Velocity and acceleration information cannot be extracted directly since the noise in the NGSIM positional information is greatly increased by the necessary numerical differentiations. We propose a smoothing algorithm for positions, velocities and accelerations that can also be applied near the boundaries. The smoothing time interval is estimated based on velocity time series and the variance of the processed acceleration time series. The velocity information obtained in this way is then applied to calculate the density function of the two-dimensional distribution of velocity and inverse distance, and the density of the distribution corresponding to the ``microscopic'' fundamental diagram. Furthermore, it is used to calculate the distributions of time gaps and times-to-collision, conditioned to several ranges of velocities and velocity differences. By simulating virtual stationary detectors we show that the probability for critical values of the times-to-collision is greatly underestimated when estimated from single-vehicle data of stationary detectors. Finally, we investigate the lane-changing process and formulate a quantitative criterion for the duration of lane changes that is based on the trajectory density in normalized coordinates. Remarkably, there is a very noisy but significant velocity advantage in favor of the targeted lane that decreases immediately before the change due to anticipatory accelerations

    Mutations in the Polycomb Group Gene polyhomeotic Lead to Epithelial Instability in both the Ovary and Wing Imaginal Disc in Drosophila

    Get PDF
    Most human cancers originate from epithelial tissues and cell polarity and adhesion defects can lead to metastasis. The Polycomb-Group of chromatin factors were first characterized in Drosophila as repressors of homeotic genes during development, while studies in mammals indicate a conserved role in body plan organization, as well as an implication in other processes such as stem cell maintenance, cell proliferation, and tumorigenesis. We have analyzed the function of the Drosophila Polycomb-Group gene polyhomeotic in epithelial cells of two different organs, the ovary and the wing imaginal disc.Clonal analysis of loss and gain of function of polyhomeotic resulted in segregation between mutant and wild-type cells in both the follicular and wing imaginal disc epithelia, without excessive cell proliferation. Both basal and apical expulsion of mutant cells was observed, the former characterized by specific reorganization of cell adhesion and polarity proteins, the latter by complete cytoplasmic diffusion of these proteins. Among several candidate target genes tested, only the homeotic gene Abdominal-B was a target of PH in both ovarian and wing disc cells. Although overexpression of Abdominal-B was sufficient to cause cell segregation in the wing disc, epistatic analysis indicated that the presence of Abdominal-B is not necessary for expulsion of polyhomeotic mutant epithelial cells suggesting that additional polyhomeotic targets are implicated in this phenomenon.Our results indicate that polyhomeotic mutations have a direct effect on epithelial integrity that can be uncoupled from overproliferation. We show that cells in an epithelium expressing different levels of polyhomeotic sort out indicating differential adhesive properties between the cell populations. Interestingly, we found distinct modalities between apical and basal expulsion of ph mutant cells and further studies of this phenomenon should allow parallels to be made with the modified adhesive and polarity properties of different types of epithelial tumors

    Polycomb-Like 3 Promotes Polycomb Repressive Complex 2 Binding to CpG Islands and Embryonic Stem Cell Self-Renewal

    Get PDF
    Polycomb repressive complex 2 (PRC2) trimethylates lysine 27 of histone H3 (H3K27me3) to regulate gene expression during diverse biological transitions in development, embryonic stem cell (ESC) differentiation, and cancer. Here, we show that Polycomb-like 3 (Pcl3) is a component of PRC2 that promotes ESC self-renewal. Using mass spectrometry, we identified Pcl3 as a Suz12 binding partner and confirmed Pcl3 interactions with core PRC2 components by co-immunoprecipitation. Knockdown of Pcl3 in ESCs increases spontaneous differentiation, yet does not affect early differentiation decisions as assessed in teratomas and embryoid bodies, indicating that Pcl3 has a specific role in regulating ESC self-renewal. Consistent with Pcl3 promoting PRC2 function, decreasing Pcl3 levels reduces H3K27me3 levels while overexpressing Pcl3 increases H3K27me3 levels. Furthermore, chromatin immunoprecipitation and sequencing (ChIP-seq) reveal that Pcl3 co-localizes with PRC2 core component, Suz12, and depletion of Pcl3 decreases Suz12 binding at over 60% of PRC2 targets. Mutation of conserved residues within the Pcl3 Tudor domain, a domain implicated in recognizing methylated histones, compromises H3K27me3 formation, suggesting that the Tudor domain of Pcl3 is essential for function. We also show that Pcl3 and its paralog, Pcl2, exist in different PRC2 complexes but bind many of the same PRC2 targets, particularly CpG islands regulated by Pcl3. Thus, Pcl3 is a component of PRC2 critical for ESC self-renewal, histone methylation, and recruitment of PRC2 to a subset of its genomic sites

    Senescent cells as a source of inflammatory factors for tumor progression

    Get PDF
    Cellular senescence, which is associated with aging, is a process by which cells enter a state of permanent cell cycle arrest, therefore constituting a potent tumor suppressive mechanism. Recent studies show that, despite the beneficial effects of cellular senescence, senescent cells can also exert harmful effects on the tissue microenvironment. The most significant of these effects is the acquisition of a senescent-associated secretory phenotype (SASP), which entails a striking increase in the secretion of pro-inflammatory cytokines. Here, we summarize our knowledge of the SASP and the impact it has on tissue microenvironments and ability to stimulate tumor progression

    Polycomb group proteins: navigators of lineage pathways led astray in cancer

    Full text link

    A Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics

    Get PDF
    The nature of dark matter and properties of neutrinos are among the mostpressing issues in contemporary particle physics. The dual-phase xenontime-projection chamber is the leading technology to cover the availableparameter space for Weakly Interacting Massive Particles (WIMPs), whilefeaturing extensive sensitivity to many alternative dark matter candidates.These detectors can also study neutrinos through neutrinoless double-beta decayand through a variety of astrophysical sources. A next-generation xenon-baseddetector will therefore be a true multi-purpose observatory to significantlyadvance particle physics, nuclear physics, astrophysics, solar physics, andcosmology. This review article presents the science cases for such a detector.<br
    corecore