2,935 research outputs found

    Comments on "The long-period Galactic Cepheid RS Puppis. I. A geometric distance from its light echoes"

    Full text link
    The luminous Galactic Cepheid RS Puppis is unique in being surrounded by a dust nebula illuminated by the variable light of the Cepheid. In a recent paper in this journal, Kervella et al. (2008) report a very precise geometric distance to RS Pup, based on measured phase lags of the light variations of individual knots in the reflection nebula. In this commentary, we examine the validity of the distance measurement, as well as the reality of the spatial structure of the nebula determined by Feast (2008) based upon the phase lags of the knots. {Kervella et al. assumed that the illuminated dust knots lie, on average, in the plane of the sky (otherwise it is not possible to derive a geometric distance from direct imaging of light echoes). We consider the biasing introduced by the high efficiency of forward scattering. We conclude that most of the knots are in fact likely to lie in front of the plane of the sky, thus invalidating the Kervella et al. result. We also show that the flat equatorial disk structure determined by Feast is unlikely; instead, the morphology of the nebula is more probably bipolar, with a significant tilt of its axis with respect to the plane of the sky. Although the Kervella et al. distance result is invalidated, we show that high-resolution polarimetric imaging has the potential to yield a valid geometric distance to this important Cepheid.Comment: 10 pages, 5 figures, 1 table; accepted by Astronomy & Astrophysic

    Will Jets Identify the Progenitors of Type Ia Supernovae?

    Full text link
    We use the fact that a Type Ia supernova has been serendipitously discovered near the jet of the active galaxy 3C 78 to examine the question of whether jets can enhance accretion onto white dwarfs. One interesting outcome of such a jet-induced accretion process is an enhanced rate of novae in the vicinity of jets. We present results of observations of the jet in M87 which appear to have indeed discovered 11 novae in close proximity to the jet. We show that a confirmation of the relation between jets and novae and Type Ia supernovae can finally identify the elusive progenitors of Type Ia supernovae.Comment: 10 pages, 3 figure

    Polarization Diagnostics for Cool Core Cluster Emission Lines

    Get PDF
    The nature of the interaction between low-excitation gas filaments at ~104 K, seen in optical line emission, and diffuse X-ray emitting coronal gas at ~107 K in the centers of galaxy clusters remains a puzzle. The presence of a strong, empirical correlation between the two gas phases is indicative of a fundamental relationship between them, though as yet of undetermined cause. The cooler filaments, originally thought to have condensed from the hot gas, could also arise from a merger or the disturbance of cool circumnuclear gas by nuclear activity. Here, we have searched for intrinsic line emission polarization in cool core galaxy clusters as a diagnostic of fundamental transport processes. Drawing on developments in solar astrophysics, direct energetic particle impact induced polarization holds the promise to definitively determine the role of collisional processes such as thermal conduction in the ISM physics of galaxy clusters, while providing insight into other highly anisotropic excitation mechanisms such as shocks, intense radiation fields, and suprathermal particles. Under certain physical conditions, theoretical calculations predict of the order of 10% polarization. Our observations of the filaments in four nearby cool core clusters place stringent upper limits ( 0.1%) on the presence of emission line polarization, requiring that if thermal conduction is operative, the thermal gradients are not in the saturated regime. This limit is consistent with theoretical models of the thermal structure of filament interfacesPeer reviewe

    HST and Spitzer point source detection and optical extinction in powerful narrow-line radio galaxies

    Get PDF
    We present the analysis of infrared HST and Spitzer data for a sample of 13 FRII radio galaxies at 0.03<z<0.11 that are classified as narrow-line radio galaxies (NLRG). In the context of the unified schemes for active galactic nuclei (AGN), our direct view of the AGN in NLRG is impeded by a parsec-scale dusty torus structure. Our high resolution infrared observations provide new information about the degree of extinction induced by the torus, and the incidence of obscured AGN in NLRG. We find that the point-like nucleus detection rate increases from 25 per cent at 1.025μ\mum, to 80 per cent at 2.05μ\mum, and to 100 per cent at 8.0μ\mum. This supports the idea that most NLRG host an obscured AGN in their centre. We estimate the extinction from the obscuring structures using X-ray, near-IR and mid-IR data. We find that the optical extinction derived from the 9.7μ\mum silicate absorption feature is consistently lower than the extinction derived using other techniques. This discrepancy challenges the assumption that all the mid-infrared emission of NLRG is extinguished by a simple screen of dust at larger radii. This disagreement can be explained in terms of either weakening of the silicate absorption feature by (i) thermal mid-IR emission from the narrow-line region, (ii) non-thermal emission from the base of the radio jets, or (iii) by direct warm dust emission that leaks through a clumpy torus without suffering major attenuation.Comment: 18 pages, 7 figures, 8 tables, accepted for publication in MNRA

    Multi-Axis Planning System (MAPS) for Hybrid Laser Metal Deposition Processes

    Get PDF
    This paper summarizes the research and development of a Multi-Axis Planning System (MAPS) for hybrid laser metal deposition processes. The project goal is to enable the current direct metal deposition systems to fully control and utilize multi-axis capability to make complex parts. MAPS allows fully automated process planning for multi-axis layered manufacturing to control direct metal deposition machines for automated fabrication. Such a capability will lead to dramatic reductions in lead time and manufacturing costs for high-value, low-volume components with high performance material. The overall approach, slicing algorithm, machine simulation for planning validation, and the planning results will be presented

    Uncertainty Analysis in Laser Deposition Finish Machining Operations

    Get PDF
    The Laser Aided Manufacturing Process (LAMP) from Missouri S&T is a laser based metals rapid manufacturing process that uses machining to improve the final part\u27s surface finish. When free-form machining, the absence of enough deposited material results in inconsistent scallop heights which result in poor surface finish or incorrect geometry in the final part. This paper investigates a probabilistic approach to various uncertainties involved in the deposition and subsequent machining of an arbitrary part. Furthermore, this paper analyses the machine errors which makes the response of Scallop Height to exceed the predefined maximum scallop height when traveling along the tool path interval distance. Tackling these problems allows us to achieve the final part shape with higher accuracy

    Development of a Low Cost Imaging System for a Laser Metal Deposition Process

    Get PDF
    The size of the melt pool created by the laser is one of the most important quality characteristic in a laser metal deposition process. This paper discusses the development of a low-cost vision system to automatically determine the size of the melt pool for in-process control. To cope with the intense infrared signal from the laser and melt pool, external ultraviolet illumination is paired with narrow bandpass filters on a usb microscope to achieve a clear image of the melt pool. The sensitivity of the melt pool to changes in system parameters and various substrate materials are also evaluated

    Thermographic Investigation of Laser Metal Deposition

    Get PDF
    Primitive stages of studies on and with additive manufacturing techniques popularly involve thin wall geometry. In the current effort attempts were made to capture various thermal aspects during deposition of a thin wall geometry. The thermo-graphic data was captured using a FLIR A615 infrared camera. Post processing using edge detection algorithms and image processing techniques, the geometric and thermal aspects of meltpool and tail of the meltpool were obtained. The effect of geometry and power on shape of the meltpool and its tail were obtained. The depositions of SS 316 with varying power. These observations were discussed and analyzed in aim to perform planned deposition of functionally gradient materials in future
    • …
    corecore