32 research outputs found

    Comparative performances of machine learning methods for classifying Crohn Disease patients using genome-wide genotyping data

    Get PDF
    Abstract: Crohn Disease (CD) is a complex genetic disorder for which more than 140 genes have been identified using genome wide association studies (GWAS). However, the genetic architecture of the trait remains largely unknown. The recent development of machine learning (ML) approaches incited us to apply them to classify healthy and diseased people according to their genomic information. The Immunochip dataset containing 18,227 CD patients and 34,050 healthy controls enrolled and genotyped by the international Inflammatory Bowel Disease genetic consortium (IIBDGC) has been re-analyzed using a set of ML methods: penalized logistic regression (LR), gradient boosted trees (GBT) and artificial neural networks (NN). The main score used to compare the methods was the Area Under the ROC Curve (AUC) statistics. The impact of quality control (QC), imputing and coding methods on LR results showed that QC methods and imputation of missing genotypes may artificially increase the scores. At the opposite, neither the patient/control ratio nor marker preselection or coding strategies significantly affected the results. LR methods, including Lasso, Ridge and ElasticNet provided similar results with a maximum AUC of 0.80. GBT methods like XGBoost, LightGBM and CatBoost, together with dense NN with one or more hidden layers, provided similar AUC values, suggesting limited epistatic effects in the genetic architecture of the trait. ML methods detected near all the genetic variants previously identified by GWAS among the best predictors plus additional predictors with lower effects. The robustness and complementarity of the different methods are also studied. Compared to LR, non-linear models such as GBT or NN may provide robust complementary approaches to identify and classify genetic markers

    Targeting surface voids to counter membrane disorders in lipointoxication-related diseases.

    No full text
    Saturated fatty acids (SFA), which are abundant in the so-called western diet, have been shown to efficiently incorporate within membrane phospholipids and therefore impact on organelle integrity and function in many cell types. In the present study, we have developed a yeast-based two-step assay and a virtual screening strategy to identify new drugs able to counter SFA-mediated lipointoxication. The compounds identified here were effective in relieving lipointoxication in mammalian β-cells, one of the main targets of SFA toxicity in humans. In vitro reconstitutions and molecular dynamics simulations on bilayers revealed that these molecules, albeit according to different mechanisms, can generate voids at the membrane surface. The resulting surface defects correlate with the recruitment of loose lipid packing or void-sensing proteins required for vesicular budding, a central cellular process that is precluded under SFA accumulation. Taken together, the results presented here point at modulation of surface voids as a central parameter to consider in order to counter the impacts of SFA on cell function.This article is freely available from the publisher's site. Click on the Additional Link above to access the full-text

    Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles

    No full text
    We identified constitutional truncating mutations of the BRCA1-interacting helicase BRIP1 in 9/1,212 individuals with breast cancer from BRCA1/BRCA2 mutation-negative families but in only 2/2,081 controls (P = 0.0030), and we estimate that BRIP1 mutations confer a relative risk of breast cancer of 2.0 (95% confidence interval = 1.2-3.2, P = 0.012). Biallelic BRIP1 mutations were recently shown to cause Fanconi anemia complementation group J. Thus, inactivating truncating mutations of BRIP1, similar to those in BRCA2, cause Fanconi anemia in biallelic carriers and confer susceptibility to breast cancer in monoallelic carrier

    The most important bioactive components of cold pressed oil from different pumpkin (Cucurbita pepo L.) seeds

    No full text
    The composition and content of certain bioactive components of the cold pressed oil obtained from six samples of pumpkin seeds (Cucurbita pepo L.) cultivated in Serbia were analyzed by GC and GC/MS. The composition and content of fatty acids, tocopherols and phytosterols, and the total content of squalene were determined. The results indicate oil's excellent quality, with high contents of monounsaturated fatty acids (37.1 +/- 0.70-43.6 +/- 0.69 g/100 g of total fatty acids), total tocopherols (38.03 +/- 0.25-64.11 +/- 0.07 mg/100 g of oil), sterols (718.1 +/- 6.1-897.8 +/- 6.8 mg/100 g of oil) and especially squalene (583.2 +/- 23.6-747 +/- 16 mg/100 g of oil). High content of squalene, phytosterols and monounsaturated fatty acids recommend the use of this type of the oil in the nutritional and medical purposes

    ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles

    No full text
    We screened individuals from 443 familial breast cancer pedigrees and 521 controls for ATM sequence variants and identified 12 mutations in affected individuals and two in controls (P = 0.0047). The results demonstrate that ATM mutations that cause ataxia-telangiectasia in biallelic carriers are breast cancer susceptibility alleles in monoallelic carriers, with an estimated relative risk of 2.37 (95% confidence interval (c.i.) = 1.51-3.78, P = 0.0003). There was no evidence that other classes of ATM variant confer a risk of breast cancer.<br/
    corecore