59 research outputs found

    Random Vibrations of Nonlinear Continua Endowed with Fractional Derivative Elements

    Get PDF
    In this paper, two techniques are proposed for determining the large displacement statistics of random exciting continua endowed with fractional derivative elements: Boundary Element Method (BEM) based Monte Carlo simulation; and Statistical Linearization (SL). The techniques are applied to the problem of nonlinear beam and plate random response determination in the case of colored random external load. The BEM is implemented in conjunction with a Newmark scheme for estimating the system response in the time domain in conjunction with repeated simulations, while SL is used for estimating efficiently and directly, albeit iteratively, the response statistics

    Analysis of multi degree of freedom systems with fractional derivative elements of rational order

    Get PDF
    In this paper a novel method based on complex eigenanalysis in the state variables domain is proposed to uncouple the set of rational order fractional differential equations governing the dynamics of multi-degree-of-freedom system. The traditional complex eigenanalysis is appropriately modified to be applicable to the coupled fractional differential equations. This is done by expanding the dimension of the problem and solving the system in the state variable domain. Examples of applications are given pertaining to multi-degree-of-freedom systems under both deterministic and stochastic loads

    Q-Method Extended Kalman Filter

    Get PDF
    A new algorithm is proposed that smoothly integrates non-linear estimation of the attitude quaternion using Davenport s q-method and estimation of non-attitude states through an extended Kalman filter. The new method is compared to a similar existing algorithm showing its similarities and differences. The validity of the proposed approach is confirmed through numerical simulations

    Equation governing the probability density evolution of multi-dimensional linear fractional differential systems subject to Gaussian white noise

    Get PDF
    Stochastic fractional differential systems are important and useful in the mathematics, physics, and engineering fields. However, the determination of their probabilistic responses is difficult due to their non-Markovian property. The recently developed globally-evolving-based generalized density evolution equation (GE-GDEE), which is a unified partial differential equation (PDE) governing the transient probability density function (PDF) of a generic path-continuous process, including non-Markovian ones, provides a feasible tool to solve this problem. In the paper, the GE-GDEE for multi-dimensional linear fractional differential systems subject to Gaussian white noise is established. In particular, it is proved that in the GE-GDEE corresponding to the state-quantities of interest, the intrinsic drift coefficient is a time-varying linear function, and can be analytically determined. In this sense, an alternative low-dimensional equivalent linear integer-order differential system with exact closed-form coefficients for the original high-dimensional linear fractional differential system can be constructed such that their transient PDFs are identical. Specifically, for a multi-dimensional linear fractional differential system, if only one or two quantities are of interest, GE-GDEE is only in one or two dimensions, and the surrogate system would be a one- or two-dimensional linear integer-order system. Several examples are studied to assess the merit of the proposed method. Though presently the closed-form intrinsic drift coefficient is only available for linear stochastic fractional differential systems, the findings in the present paper provide a remarkable demonstration on the existence and eligibility of GE-GDEE for the case that the original high-dimensional system itself is non-Markovian, and provide insights for the physical-mechanism-informed determination of intrinsic drift and diffusion coefficients of GE-GDEE of more generic complex nonlinear systems

    Evaluation of Ares-I Control System Robustness to Uncertain Aerodynamics and Flex Dynamics

    Get PDF
    This paper discusses the application of robust control theory to evaluate robustness of the Ares-I control systems. Three techniques for estimating upper and lower bounds of uncertain parameters which yield stable closed-loop response are used here: (1) Monte Carlo analysis, (2) mu analysis, and (3) characteristic frequency response analysis. All three methods are used to evaluate stability envelopes of the Ares-I control systems with uncertain aerodynamics and flex dynamics. The results show that characteristic frequency response analysis is the most effective of these methods for assessing robustness

    Nonlinear Stochastic Dynamics of an Oscillating Water Column (U-OWC) Harvester: A Frequency Domain Approach

    Get PDF
    This paper deals with the problem of examining the nonlinear dynamic of a U-Oscillating Water Column (U-OWC) Wave Energy Converter. The U-OWC dynamic response is governed by a set of non-linear differential equations. In the paper, an approximate linear solution is sought by using the technique of statistical linearization. The linearization scheme is implemented by identifying a surrogate linear system equivalent to the nonlinear one in a mean-square sense. In this context, frequency-domain analyses of the U-OWC response are readily implemented via standard linear input-output relationship. Comparisons between the nonlinear response computed via numerical simulations and by the approximate one assess the reliability of the method. The proposed approach is applied to a small-scale U-OWC model installed in the Natural Engineering Laboratory (NOEL) in Reggio Calabria, Italy

    Absolute Stability Analysis of a Phase Plane Controlled Spacecraft

    Get PDF
    Many aerospace attitude control systems utilize phase plane control schemes that include nonlinear elements such as dead zone and ideal relay. To evaluate phase plane control robustness, stability margin prediction methods must be developed. Absolute stability is extended to predict stability margins and to define an abort condition. A constrained optimization approach is also used to design flex filters for roll control. The design goal is to optimize vehicle tracking performance while maintaining adequate stability margins. Absolute stability is shown to provide satisfactory stability constraints for the optimization

    Thermally-Constrained Fuel-Optimal ISS Maneuvers

    Get PDF
    Optimal Propellant Maneuvers (OPMs) are now being used to rotate the International Space Station (ISS) and have saved hundreds of kilograms of propellant over the last two years. The savings are achieved by commanding the ISS to follow a pre-planned attitude trajectory optimized to take advantage of environmental torques. The trajectory is obtained by solving an optimal control problem. Prior to use on orbit, OPM trajectories are screened to ensure a static sun vector (SSV) does not occur during the maneuver. The SSV is an indicator that the ISS hardware temperatures may exceed thermal limits, causing damage to the components. In this paper, thermally-constrained fuel-optimal trajectories are presented that avoid an SSV and can be used throughout the year while still reducing propellant consumption significantly
    • …
    corecore