8 research outputs found

    Relation between circulating CC16 concentrations, lung function, and development of chronic obstructive pulmonary disease across the lifespan: a prospective study

    No full text
    BACKGROUND: Low concentrations of the anti-inflammatory protein CC16 (approved symbol SCGB1A1) in serum have been associated with accelerated decline in forced expiratory volume in 1 s (FEV1) in patients with chronic obstructive pulmonary disease (COPD). We investigated whether low circulating CC16 concentrations precede lung function deficits and incidence of COPD in the general population. METHODS: We assessed longitudinal data on CC16 concentrations in serum and associations with decline in FEV1 and incidence of airflow limitation for adults who were free from COPD at baseline in the population-based Tucson Epidemiological Study of Airway Obstructive Disease ([TESAOD] n=960, mean follow-up 14 years), European Community Respiratory Health Survey ([ECRHS-Sp] n=514, 11 years), and Swiss Cohort Study on Air Pollution and Lung Diseases in Adults ([SAPALDIA] n=167, 8 years) studies. Additionally, we measured circulating CC16 concentrations in samples from children aged 4-6 years in the Tucson Children's Respiratory Study (n=427), UK Manchester Asthma and Allergy Study (n=481), and the Swedish Barn/children, Allergy, Milieu, Stockholm, Epidemiological survey (n=231) birth cohorts to assess whether low CC16 concentrations in childhood were predictive for subsequent lung function. FINDINGS: After adjustment for sex, age, height, smoking status and intensity, pack-years, asthma, and FEV1 at baseline, we found an inverse association between CC16 concentration and decline in FEV1 in adults in TESAOD (4·4 mL/year additional FEV1 decline for each SD decrease in baseline CC16 concentration, p=0·0014) and ECRHS-Sp (2·4 mL/year, p=0·023); the effect in SAPALDIA was marginal (4·5 mL/year, p=0·052). Low CC16 concentration at baseline was also associated with increased risk of incident stage 2 airflow limitation (ratio of FEV1 to forced expiratory volume [FEV1/FVC] less than 70% plus FEV1 % predicted less than 80%) in TESAOD and ECRHS-Sp. In children, the lowest tertile of CC16 concentrations was associated with a subsequent FEV1 deficit of 68 mL up to age 16 years (p=0·0001), which was confirmed in children who had never smoked by age 16 years (-71 mL, p<0·0001). INTERPRETATION: Low concentrations of CC16 in serum are associated with reduced lung function in childhood, accelerated lung function decline in adulthood, and development of moderate airflow limitation in the general adult population. FUNDING: National Heart, Lung, and Blood Institute and European Union Seventh Framework Programme.This study was supported by awards HL107188, HL095021, and HL056177 from the National Heart, Lung, and Blood Institute, US National Institutes of Health; FIS award PS09/01354 from the Spanish Instituto de Salud Carlos III; a post-doctoral fellowship to IL by the Environment and Health Fund, Israel; grant 33CSCO-134276 from the Swiss National Science Foundation; grant awards by the Swedish Research Council, the Swedish Heart-Lung Foundation, and the Stockholm County Council (ALF); grants G0601361 and MR/K002449/1 by the Medical Research Council, UK; a grant award by the JP Moulton Charitable Foundation; and grant agreement number 261357 (Mechanisms of the Development of ALLergy – MeDALL) by the EU Seventh Framework Programm

    Expression quantitative trait locus fine mapping of the 17q12–21 asthma locus in African American children: a genetic association and gene expression study

    No full text
    Background: African ancestry is associated with a higher prevalence and greater severity of asthma than European ancestries, yet genetic studies of the most common locus associated with childhood-onset asthma, 17q12–21, in African Americans have been inconclusive. The aim of this study was to leverage both the phenotyping of the Children's Respiratory and Environmental Workgroup (CREW) birth cohort consortium, and the reduced linkage disequilibrium in African Americans, to fine map the 17q12–21 locus. Methods: We first did a genetic association study and meta-analysis using 17q12–21 tag single-nucleotide polymorphisms (SNPs) for childhood-onset asthma in 1613 European American and 870 African American children from the CREW consortium. Nine tag SNPs were selected based on linkage disequilibrium patterns at 17q12–21 and their association with asthma, considering the effect allele under an additive model (0, 1, or 2 effect alleles). Results were meta-analysed with publicly available summary data from the EVE consortium (on 4303 European American and 3034 African American individuals) for seven of the nine SNPs of interest. Subsequently, we tested for expression quantitative trait loci (eQTLs) among the SNPs associated with childhood-onset asthma and the expression of 17q12–21 genes in resting peripheral blood mononuclear cells (PBMCs) from 85 African American CREW children and in upper airway epithelial cells from 246 African American CREW children; and in lower airway epithelial cells from 44 European American and 72 African American adults from a case-control study of asthma genetic risk in Chicago (IL, USA). Findings: 17q12–21 SNPs were broadly associated with asthma in European Americans. Only two SNPs (rs2305480 in gasdermin-B [GSDMB] and rs8076131 in ORMDL sphingolipid biosynthesis regulator 3 [ORMDL3]) were associated with asthma in African Americans, at a Bonferroni-corrected threshold of p<0·0055 (for rs2305480_G, odds ratio [OR] 1·36 [95% CI 1·12–1·65], p=0·0014; and for rs8076131_A, OR 1·37 [1·13–1·67], p=0·0010). In upper airway epithelial cells from African American children, genotype at rs2305480 was the most significant eQTL for GSDMB (eQTL effect size [β] 1·35 [95% CI 1·25–1·46], p<0·0001), and to a lesser extent showed an eQTL effect for post-GPI attachment to proteins phospholipase 3 (β 1·15 [1·08–1·22], p<0·0001). No SNPs were eQTLs for ORMDL3. By contrast, in PBMCs, the five core SNPs were associated only with expression of GSDMB and ORMDL3. Genotype at rs12936231 (in zona pellucida binding protein 2) showed the strongest associations across both genes (for GSDMB, eQTLβ 1·24 [1·15–1·32], p<0·0001; and for ORMDL3 (β 1·19 [1·12–1·24], p<0·0001). The eQTL effects of rs2305480 on GSDMB expression were replicated in lower airway cells from African American adults (β 1·29 [1·15–1·44], p<0·0001). Interpretation: Our study suggests that SNPs regulating GSDMB expression in airway epithelial cells have a major role in childhood-onset asthma, whereas SNPs regulating the expression levels of 17q12–21 genes in resting blood cells are not central to asthma risk. Our genetic and gene expression data in African Americans and European Americans indicated GSDMB to be the leading candidate gene at this important asthma locus.6 month embargo; published: 01 May 2020This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore