46 research outputs found

    Age-dependent increase of oxidative stress regulates microRNA-29 family preserving cardiac health.

    Get PDF
    The short-lived turquoise killifish Nothobranchius furzeri (Nfu) is a valid model for aging studies. Here, we investigated its age-associated cardiac function. We observed oxidative stress accumulation and an engagement of microRNAs (miRNAs) in the aging heart. MiRNA-sequencing of 5 week (young), 12-21 week (adult) and 28-40 week (old) Nfu hearts revealed 23 up-regulated and 18 down-regulated miRNAs with age. MiR-29 family turned out as one of the most up-regulated miRNAs during aging. MiR-29 family increase induces a decrease of known targets like collagens and DNA methyl transferases (DNMTs) paralleled by 5´methyl-cytosine (5mC) level decrease. To further investigate miR-29 family role in the fish heart we generated a transgenic zebrafish model where miR-29 was knocked-down. In this model we found significant morphological and functional cardiac alterations and an impairment of oxygen dependent pathways by transcriptome analysis leading to hypoxic marker up-regulation. To get insights the possible hypoxic regulation of miR-29 family, we exposed human cardiac fibroblasts to 1% O <sub>2</sub> levels. In hypoxic condition we found miR-29 down-modulation responsible for the accumulation of collagens and 5mC. Overall, our data suggest that miR-29 family up-regulation might represent an endogenous mechanism aimed at ameliorating the age-dependent cardiac damage leading to hypertrophy and fibrosis

    Histone Deacetylase Inhibition Enhances Self Renewal and Cardioprotection by Human Cord Blood-Derived CD34+ Cells

    Get PDF
    Abstract BACKGROUND: Use of peripheral blood- or bone marrow-derived progenitors for ischemic heart repair is a feasible option to induce neo-vascularization in ischemic tissues. These cells, named Endothelial Progenitors Cells (EPCs), have been extensively characterized phenotypically and functionally. The clinical efficacy of cardiac repair by EPCs cells remains, however, limited, due to cell autonomous defects as a consequence of risk factors. The devise of "enhancement" strategies has been therefore sought to improve repair ability of these cells and increase the clinical benefit. PRINCIPAL FINDINGS: Pharmacologic inhibition of histone deacetylases (HDACs) is known to enhance hematopoietic stem cells engraftment by improvement of self renewal and inhibition of differentiation in the presence of mitogenic stimuli in vitro. In the present study cord blood-derived CD34(+) were pre-conditioned with the HDAC inhibitor Valproic Acid. This treatment affected stem cell growth and gene expression, and improved ischemic myocardium protection in an immunodeficient mouse model of myocardial infarction. CONCLUSIONS: Our results show that HDAC blockade leads to phenotype changes in CD34(+) cells with enhanced self renewal and cardioprotection

    In vitro epigenetic reprogramming of human cardiac mesenchymal stromal cells into functionally competent cardiovascular precursors

    Get PDF
    Adult human cardiac mesenchymal-like stromal cells (CStC) represent a relatively accessible cell type useful for therapy. In this light, their conversion into cardiovascular precursors represents a potential successful strategy for cardiac repair. The aim of the present work was to reprogram CStC into functionally competent cardiovascular precursors using epigenetically active small molecules. CStC were exposed to low serum (5% FBS) in the presence of 5 \ub5M all-trans Retinoic Acid (ATRA), 5 \ub5M Phenyl Butyrate (PB), and 200 \ub5M diethylenetriamine/nitric oxide (DETA/NO), to create a novel epigenetically active cocktail (EpiC). Upon treatment the expression of markers typical of cardiac resident stem cells such as c-Kit and MDR-1 were up-regulated, together with the expression of a number of cardiovascular-associated genes including KDR, GATA6, Nkx2.5, GATA4, HCN4, NaV1.5, and \u3b1-MHC. In addition, profiling analysis revealed that a significant number of microRNA involved in cardiomyocyte biology and cell differentiation/proliferation, including miR 133a, 210 and 34a, were up-regulated. Remarkably, almost 45% of EpiC-treated cells exhibited a TTX-sensitive sodium current and, to a lower extent in a few cells, also the pacemaker I(f) current. Mechanistically, the exposure to EpiC treatment introduced global histone modifications, characterized by increased levels of H3K4Me3 and H4K16Ac, as well as reduced H4K20Me3 and H3s10P, a pattern compatible with reduced proliferation and chromatin relaxation. Consistently, ChIP experiments performed with H3K4me3 or H3s10P histone modifications revealed the presence of a specific EpiC-dependent pattern in c-Kit, MDR-1, and Nkx2.5 promoter regions, possibly contributing to their modified expression. Taken together, these data indicate that CStC may be epigenetically reprogrammed to acquire molecular and biological properties associated with competent cardiovascular precursors

    Stem Cell Senescence and Regenerative Paradigms

    No full text

    Vega roll and attitude control system algorithms trade-off study

    No full text
    This paper describes the trade-off study for the selection of the most suitable algorithms for the Roll and Attitude Control System (RACS) within the FPS-A program, aimed at developing the new Flight Program Software of VEGA Launcher. Two algorithms were analyzed: Switching Lines (SL) and Quaternion Feedback Regulation. Using a development simulation tool that models two critical flight phases (Long Coasting Phase (LCP) and Payload Release (PLR) Phase), both algorithms were assessed with Monte Carlo batch simulations for both of the phases. The statistical outcomes of the results demonstrate a 100 percent success rate for Quaternion Feedback Regulation, and support the choice of this method

    SIP1/ZEB2 Targeting by the Nitric Oxide-dependent miR200 Family is Important for Early Mesodermic/Cardiovascular Commitment of Mouse Embryonic Stem Cells

    No full text
    Taken altogether our data identifies the mir200 family as responsive to NO treatment and provide evidences about the role of Sip1/ZEB2 in the regulation of the nitric oxide-dependent early cardiovascular ES differentiation

    Aging Triggers H3K27 Trimethylation Hoarding in the Chromatin of Nothobranchius furzeri Skeletal Muscle

    Get PDF
    Aging associates with progressive loss of skeletal muscle function, sometimes leading to sarcopenia, a process characterized by impaired mobility and weakening of muscle strength. Since aging associates with profound epigenetic changes, epigenetic landscape alteration analysis in the skeletal muscle promises to highlight molecular mechanisms of age-associated alteration in skeletal muscle. This study was conducted exploiting the short-lived turquoise killifish Nothobranchius furzeri (Nfu), a relatively new model for aging studies. The epigenetic analysis suggested a less accessible and more condensed chromatin in old Nfu skeletal muscle. Specifically, an accumulation of heterochromatin regions was observed as a consequence of increased levels of H3K27me3, HP1α, polycomb complex subunits, and senescence-associated heterochromatic foci (SAHFs). Consistently, euchromatin histone marks, including H3K9ac, were significantly reduced. In this context, integrated bioinformatics analysis of RNASeq and ChIPSeq, related to skeletal muscle of Nfu at different ages, revealed a down-modulation of genes involved in cell cycle, differentiation, and DNA repair and an up-regulation of inflammation and senescence genes. Undoubtedly, more studies are needed to disclose the detailed mechanisms; however, our approach enlightened unprecedented features of Nfu skeletal muscle aging, potentially associated with swimming impairment and reduced mobility typical of old Nfu
    corecore