24 research outputs found

    Detection of H2O and evidence for TiO/VO in an ultra hot exoplanet atmosphere

    Get PDF
    This is the author accepted manuscript. The final version is available from American Astronomical Society via the DOI in this recordWe present a primary transit observation for the ultra hot (Teq 2400 K) gas giant expolanetWASP-121b, made using the Hubble Space Telescope Wide Field Camera 3 in spectroscopic mode across the 1.12{1.64 m wavelength range. The 1.4 m water absorption band is detected at high con dence (5:4 ) in the planetary atmosphere. We also reanalyze ground-based photometric lightcurves taken in the B, r0, and z0 lters. Signi cantly deeper transits are measured in these optical bandpasses relative to the near-infrared wavelengths. We conclude that scattering by high-altitude haze alone is unlikely to account for this di erence, and instead interpret it as evidence for titanium oxide and vanadium oxide absorption. Enhanced opacity is also inferred across the 1:12{1:3 m wavelength range, possibly due to iron hydride absorption. If con rmed, WASP-121b will be the rst exoplanet with titanium oxide, vanadium oxide, and iron hydride detected in transmission. The latter are important species in M/L dwarfs, and their presence is likely to have a signi cant e ect on the overall physics and chemistry of the atmosphere, including the production of a strong thermal inversionThe research leading to these results has received funding from the European Research Council under the European Union Seventh Framework Program (FP7/2007-2013) ERC grant agreement no. 336792

    Non-detection of He I in the atmosphere of GJ1214b with Keck/NIRSPEC, at a time of minimal telluric contamination

    Get PDF
    Observations of helium in exoplanet atmospheres may reveal the presence of large gaseous envelopes, and indicate ongoing atmospheric escape. Orell-Miquel et al. (2022) used CARMENES to measure a tentative detection of helium for the sub-Neptune GJ 1214b, with a peak excess absorption reaching over 2% in transit depth at 10830 Angstroms. However, several non-detections of helium had previously been reported for GJ 1214b. One explanation for the discrepancy was contamination of the planetary signal by overlapping telluric absorption- and emission lines. We used Keck/NIRSPEC to observe another transit of GJ 1214b at 10830 Angstroms, at a time of minimal contamination by telluric lines, and did not observe planetary helium absorption. Accounting for correlated noise in our measurement, we place an upper limit on the excess absorption size of 1.22% (95% confidence). We find that the discrepancy between the CARMENES and NIRSPEC observations is unlikely to be caused by using different instruments or stellar activity. It is currently unclear whether the difference is due to correlated noise in the observations, or variability in the planetary atmosphere.Comment: Accepted for publication in ApJ

    Single transit candidates from K2 : detection and period estimation

    Get PDF
    Photometric surveys such as Kepler have the precision to identify exoplanet and eclipsing binary candidates from only a single transit. K2, with its 75 d campaign duration, is ideally suited to detect significant numbers of single-eclipsing objects. Here we develop a Bayesian transit-fitting tool (‘Namaste: An Mcmc Analysis of Single Transit Exoplanets’) to extract orbital information from single transit events. We achieve favourable results testing this technique on known Kepler planets, and apply the technique to seven candidates identified from a targeted search of K2 campaigns 1, 2 and 3. We find EPIC203311200 to host an excellent exoplanet candidate with a period, assuming zero eccentricity, of 540+410 −230 d and a radius of 0.51 ± 0.05RJup. We also find six further transit candidates for which more follow-up is required to determine a planetary origin. Such a technique could be used in the future with TESS, PLATO and ground-based photometric surveys such as NGTS, potentially allowing the detection of planets in reach of confirmation by Gaia

    One of the closest exoplanet pairs to the 3:2 Mean Motion Resonance: K2-19b \& c

    Get PDF
    The K2 mission has recently begun to discover new and diverse planetary systems. In December 2014 Campaign 1 data from the mission was released, providing high-precision photometry for ~22000 objects over an 80 day timespan. We searched these data with the aim of detecting further important new objects. Our search through two separate pipelines led to the independent discovery of K2-19b \& c, a two-planet system of Neptune sized objects (4.2 and 7.2 RR_\oplus), orbiting a K dwarf extremely close to the 3:2 mean motion resonance. The two planets each show transits, sometimes simultaneously due to their proximity to resonance and alignment of conjunctions. We obtain further ground based photometry of the larger planet with the NITES telescope, demonstrating the presence of large transit timing variations (TTVs), and use the observed TTVs to place mass constraints on the transiting objects under the hypothesis that the objects are near but not in resonance. We then statistically validate the planets through the \texttt{PASTIS} tool, independently of the TTV analysis.Comment: 18 pages, 10 figures, accepted to A&A, updated to match published versio

    Abundance measurements of H<sub>2</sub>O and carbon-bearing species in the atmosphere of WASP-127b confirm its super-solar metallicity

    Get PDF
    The chemical abundances of exoplanet atmospheres may provide valuable information about the bulk compositions, formation pathways, and evolutionary histories of planets. Exoplanets with large, relatively cloud-free atmospheres, and which orbit bright stars provide the best opportunities for accurate abundance measurements. For this reason, we measured the transmission spectrum of the bright (V∼10.2), large (1.37RJ1.37 R_J), sub-Saturn mass (0.19MJ0.19 M_J) exoplanet WASP-127b across the near-UV to near-infrared wavelength range (0.3–5 μm), using the Hubble and Spitzer Space Telescopes. Our results show a feature-rich transmission spectrum, with absorption from Na, H2OH_2O, and CO2CO_2, and wavelength-dependent scattering from small-particle condensates. We ran two types of atmospheric retrieval models: one enforcing chemical equilibrium, and the other which fit the abundances freely. Our retrieved abundances at chemical equilibrium for Na, O and C are all super-solar, with abundances relative to solar values of 96+159^{+15}_{-6}, 165+716^{+7}_{-5}⁠, and 269+1226^{+12}_{-9} respectively. Despite giving conflicting C/O ratios, both retrievals gave super-solar CO2CO_2 volume mixing ratios, which adds to the likelihood that WASP-127b’s bulk metallicity is super-solar, since CO2CO_2 abundance is highly sensitive to atmospheric metallicity. We detect water at a significance of 13.7 σ. Our detection of Na is in agreement with previous ground-based detections, though we find a much lower abundance, and we also do not find evidence for Li or K despite increased sensitivity. In the future, spectroscopy with JWST will be able to constrain WASP-127b’s C/O ratio, and may reveal the formation history of this metal-enriched, highly observable exoplanet

    Diurnal variations in the stratosphere of the ultrahot giant exoplanet WASP-121b

    Get PDF
    The temperature profile of a planetary atmosphere is a key diagnostic of radiative and dynamical processes governing the absorption, redistribution and emission of energy. Observations have revealed dayside stratospheres that either cool1,2 or warm3,4 with altitude for a small number of gas giant exoplanets, whereas other dayside stratospheres are consistent with constant temperatures5,6,7. Here we report spectroscopic phase curve measurements for the gas giant WASP-121b (ref.8) that constrain stratospheric temperatures throughout the diurnal cycle. Variations measured for a water vapour spectral feature reveal a temperature profile that transitions from warming with altitude on the dayside hemisphere to cooling with altitude on the nightside hemisphere. The data are well explained by models assuming chemical equilibrium, with water molecules thermally dissociating at low pressures on the dayside and recombining on the nightside9,10. Nightside temperatures are low enough for perovskite (CaTiO3) to condense, which could deplete titanium from the gas phase11,12 and explain recent non-detections at the day–night terminator13,14,15,16. Nightside temperatures are also consistent with the condensation of refractory species such as magnesium, iron and vanadium. Detections15,16,17,18 of these metals at the day–night terminator suggest, however, that if they do form nightside clouds, cold trapping does not efficiently remove them from the upper atmosphere. Horizontal winds and vertical mixing could keep these refractory condensates aloft in the upper atmosphere of the nightside hemisphere until they are recirculated to the hotter dayside hemisphere and vaporized

    Identification of carbon dioxide in an exoplanet atmosphere

    Get PDF
    Carbon dioxide (CO2) is a key chemical species that is found in a wide range of planetary atmospheres. In the context of exoplanets, CO2 is an indicator of the metal enrichment (that is, elements heavier than helium, also called ‘metallicity’), and thus the formation processes of the primary atmospheres of hot gas giants. It is also one of the most promising species to detect in the secondary atmospheres of terrestrial exoplanets. Previous photometric measurements of transiting planets with the Spitzer Space Telescope have given hints of the presence of CO2, but have not yielded definitive detections owing to the lack of unambiguous spectroscopic identification. Here we present the detection of CO2 in the atmosphere of the gas giant exoplanet WASP-39b from transmission spectroscopy observations obtained with JWST as part of the Early Release Science programme. The data used in this study span 3.0–5.5 micrometres in wavelength and show a prominent CO2 absorption feature at 4.3 micrometres (26-sigma significance). The overall spectrum is well matched by one-dimensional, ten-times solar metallicity models that assume radiative–convective–thermochemical equilibrium and have moderate cloud opacity. These models predict that the atmosphere should have water, carbon monoxide and hydrogen sulfide in addition to CO2, but little methane. Furthermore, we also tentatively detect a small absorption feature near 4.0 micrometres that is not reproduced by these models
    corecore