1,293 research outputs found

    Improved calibration of the radii of cool stars based on 3D simulations of convection: implications for the solar model

    Full text link
    Main sequence, solar-like stars (M < 1.5 Msun) have outer convective envelopes that are sufficiently thick to affect significantly their overall structure. The radii of these stars, in particular, are sensitive to the details of inefficient, super-adiabatic convection occurring in their outermost layers. The standard treatment of convection in stellar evolution models, based on the Mixing-Length Theory (MLT), provides only a very approximate description of convection in the super-adiabatic regime. Moreover, it contains a free parameter, alpha_MLT, whose standard calibration is based on the Sun, and is routinely applied to other stars ignoring the differences in their global parameters (e.g., effective temperature, gravity, chemical composition) and previous evolutionary history. In this paper, we present a calibration of alpha_MLT based on three-dimensional radiation-hydrodynamics (3D RHD) simulations of convection. The value of alpha_MLT is adjusted to match the specific entropy in the deep, adiabatic layers of the convective envelope to the corresponding value obtained from the 3D RHD simulations, as a function of the position of the star in the (log g, log T_eff) plane and its chemical composition. We have constructed a model of the present-day Sun using such entropy-based calibration. We find that its past luminosity evolution is not affected by the entropy calibration. The predicted solar radius, however, exceeds that of the standard model during the past several billion years, resulting in a lower surface temperature. This illustrative calculation also demonstrates the viability of the entropy approach for calibrating the radii of other late-type stars.Comment: 16 pages, 14 figures, accepted for publication in the Astrophysical Journa

    On the Neutrino Flux from Gamma-Ray Bursts

    Get PDF
    Observations imply that gamma-ray bursts (GRBs) are produced by the dissipation of the kinetic energy of a highly relativistic fireball. Photo-meson interactions of protons with gamma-rays within the fireball dissipation region are expected to convert a significant fraction of fireball energy to >10^14 eV neutrinos. We present an analysis of the internal shock model of GRBs, where production of synchrotron photons and photo-meson neutrinos are self-consistently calculated, and show that the fraction of fireball energy converted to high energy neutrinos is not sensitive to uncertainties in fireball model parameters, such as the expansion Lorentz factor and characteristic variability time. This is due in part to the constraints imposed on fireball parameters by observed GRB characteristics, and in part to the fact that for parameter values for which the photo-meson optical depth is high (implying high proton energy loss to pion production) neutrino production is suppressed by pion and muon synchrotron losses. The neutrino flux is therefore expected to be correlated mainly with the observed gamma-ray flux. The time averaged neutrino intensity predicted by the model, ~10^-8.5 GeV/cm^2 s sr, is consistent with the flux predicted by the assumption that GRBs are the sources of >10^19 eV cosmic-rays.Comment: 17 pages, 7 ps-figures. Submitted to Ap

    Sea level changes in the Mediterranean: tectonic implications

    Get PDF
    The interpretation of sea level variations along the coasts of the Mediterranean region must be accompanied by the evaluation of vertical land movements associated with seismic and volcanic sources. This can be tentatively carried out through seismic strain analysis based on data pertaining the last 2 millennia as well as from the study of maritime archaeological structures.PublishedHersonissos, Crete island, Greece3.3. Geodinamica e struttura dell'interno della Terraope

    IL-18 receptor marks functional CD8+ T cells in non-small cell lung cancer

    Get PDF
    IL-18 is an inflammasome-related cytokine, member of the IL-1 family, produced by a wide range of cells in response to signals by several pathogen-or damage-associated molecular patterns. It can be highly represented in tumor patients, but its relevance in human cancer development is not clear. In this study, we provide evidence that IL-18 is principally expressed in tumor cells and, in concert with other conventional Th1 cell-driven cytokines, has a pivotal role in establishing a pro-inflammatory milieu in the tumor microenvironment of human non-small cell lung cancer (NSCLC). Interestingly, the analysis of tumor-infiltrating CD8(+) T cell populations showed that (i) the relative IL-18 receptor (IL-18R) is significantly more expressed by the minority of cells with a functional phenotype (T-bet(+)Eomes(+)), than by the majority of those with the dysfunctional phenotype T-bet(+)Eomes(+) generally resident within tumors; (ii) as a consequence, the former are significantly more responsive than the latter to IL-18 stimulus in terms of IFN gamma production ex vivo; (iii) PD-1 expression does not discriminate these two populations. These data indicate that IL-18R may represent a biomarker of the minority of functional tumor-infiltrating CD8(+) T cells in adenocarcinoma NSCLC patients. In addition, our results lead to envisage the possible therapeutic usage of IL-18 in NSCLC, even in combination with other checkpoint inhibitor approaches

    Frequency of Piroplasms Babesia microti and Cytauxzoon felis in Stray Cats from Northern Italy

    Get PDF
    Emerging diseases caused by piroplasms pose a health risk for man and other animals, and domestic cats have been proposed as potential reservoirs for some piroplasm infections. The aim of this study was to identify the frequency of the piroplasms Babesia microti and Cytauxzoon felis in stray cats from northern Italy and to identify possible risk factors associated with these infections. Blood samples from 260 stray cats enrolled in a trap-neuter-release (TNR) program in northern Italy were examined with conventional PCR for the presence of Babesia microti and Cytauxzoon felis DNA. No sample (0.0%) tested positive for C. felis, whilst B. microti DNA was detected in two samples (0.8%). Both infected cats were in good clinical condition and recovered well from the neutering surgery. One of these two cats had a triple coinfection with Babesia microti, Candidatus Mycoplasma haemominutum, and Anaplasma phagocytophilum. Evidence presented in this study indicates that the blood borne protozoans Babesia microti and Cytauxzoon felis are not widely distributed in stray cat populations in Milan, northern Italy, and that the significance of cats as a reservoir host for B. microti in this area is limited

    Circulating MicroRNA-15a Associates With Retinal Damage in Patients With Early Stage Type 2 Diabetes

    Get PDF
    : Circulating microRNAs are potential biomarkers of type 2 diabetes mellitus (T2DM) and related complications. Here, we investigated the association of microRNA-15a with early retinal damage in T2DM. A cohort of untreated subjects screened for intermediate/high risk of T2DM, according to a score assessment questionnaire, and then recognized to have a normal (NGT) or impaired (IGT) glucose tolerance or T2DM was studied. The thickness of the ganglion cell complex (GCC), an early marker of retinal degeneration anteceding overt retinopathy was assessed by Optical Coherence Tomography. Total and extracellular vesicles (EV)-associated microRNA-15a quantity was measured in plasma by real time PCR. MicroRNA-15a level was significantly higher in subjects with IGT and T2DM compared with NGT. MicroRNA-15a abundance was correlated to body mass index and classical diabetes biomarkers, including fasting glucose, HbA1c, insulinemia, and HOMA-IR. Moreover, GCC thickness was significantly reduced in IGT and T2DM subjects compared with NGT controls. Importantly, total microRNA-15a correlated with GCC in IGT subjects, while in T2DM subjects, EV-microRNA-15a negatively correlated with GCC, suggesting that microRNA-15a may monitor initial retinal damage. The assessment of plasma microRNA-15a may help refining risk assessment and secondary prevention in patients with preclinical T2DM

    Search for Early Gamma-ray Production in Supernovae Located in a Dense Circumstellar Medium with the Fermi LAT

    Get PDF
    Supernovae (SNe) exploding in a dense circumstellar medium (CSM) are hypothesized to accelerate cosmic rays in collisionless shocks and emit GeV gamma rays and TeV neutrinos on a time scale of several months. We perform the first systematic search for gamma-ray emission in Fermi LAT data in the energy range from 100 MeV to 300 GeV from the ensemble of 147 SNe Type IIn exploding in dense CSM. We search for a gamma-ray excess at each SNe location in a one year time window. In order to enhance a possible weak signal, we simultaneously study the closest and optically brightest sources of our sample in a joint-likelihood analysis in three different time windows (1 year, 6 months and 3 months). For the most promising source of the sample, SN 2010jl (PTF10aaxf), we repeat the analysis with an extended time window lasting 4.5 years. We do not find a significant excess in gamma rays for any individual source nor for the combined sources and provide model-independent flux upper limits for both cases. In addition, we derive limits on the gamma-ray luminosity and the ratio of gamma-ray-to-optical luminosity ratio as a function of the index of the proton injection spectrum assuming a generic gamma-ray production model. Furthermore, we present detailed flux predictions based on multi-wavelength observations and the corresponding flux upper limit at 95% confidence level (CL) for the source SN 2010jl (PTF10aaxf).Comment: Accepted for publication in ApJ. Corresponding author: A. Franckowiak ([email protected]), updated author list and acknowledgement

    The third intracellular loop of the human somatostatin receptor 5 is crucial for arrestin binding and receptor internalization after somatostatin stimulation

    Get PDF
    Somatostatin (SS) is a widely distributed polypeptide that exerts inhibitory effects on hormone secretion and cell proliferation by interacting with five different receptors (SST1-SST5), that display important differences in tissue distribution, coupling to second messengers, affinity for SS and intracellular trafficking. SS analogues currently used in the treatment of acromegaly inhibit hormone secretion and cell proliferation by binding to SST2 and 5. Beta-arrestins have been implicated in regulating SST internalization but the structural domains mediating this effect are largely unknown. The aim of this study was to characterize the intracellular mechanisms responsible for internalization of human SST5 in the rat pituitary cell line GH3. To this purpose we evaluated by fluorescence microscopy SS28-mediated trafficking of receptor fused to DsRed and beta-arrestin2 fused to GFP. To identify the SST5 structural domains involved in these processes, we evaluated progressive C-terminal truncated proteins, SST5 mutants in which serine or threonine residues within the third cytoplasmic domain were mutated (S242A, T247A) and a naturally occurring R240W mutant in the third loop previously found in one acromegalic patient resistant to somatostatin analogues. We tested the ability of these mutants to associate with beta-arrestin2 and to internalize under agonist stimulation. The truncated mutants are comparable to the wild-type receptor with respect to beta-arrestin recruitment and internalization, whereas third cytoplasmic loop mutants show a significantly reduced internalization and arrestin translocation upon SS28 stimulation. Surprisingly, SST5 with both C-terminal truncation and third loop mutation exhibits normal internalization and beta-arrestin recruitment. Our results indicate SST5 third intracellular loop as an important mediator of beta-arrestin/receptor interaction and receptor internalization, while the role of the C-terminal tail would be to sterically prevent beta-arrestin/receptor interaction in basal conditions. Further elucidation of the molecular signals underlying SST5 intracellular trafficking will provide a better understanding of its function during prolonged agonist treatment

    Search for extended gamma-ray emission from the Virgo galaxy cluster with Fermi-LAT

    Get PDF
    Galaxy clusters are one of the prime sites to search for dark matter (DM) annihilation signals. Depending on the substructure of the DM halo of a galaxy cluster and the cross sections for DM annihilation channels, these signals might be detectable by the latest generation of γ\gamma-ray telescopes. Here we use three years of Fermi Large Area Telescope (LAT) data, which are the most suitable for searching for very extended emission in the vicinity of nearby Virgo galaxy cluster. Our analysis reveals statistically significant extended emission which can be well characterized by a uniformly emitting disk profile with a radius of 3\deg that moreover is offset from the cluster center. We demonstrate that the significance of this extended emission strongly depends on the adopted interstellar emission model (IEM) and is most likely an artifact of our incomplete description of the IEM in this region. We also search for and find new point source candidates in the region. We then derive conservative upper limits on the velocity-averaged DM pair annihilation cross section from Virgo. We take into account the potential γ\gamma-ray flux enhancement due to DM sub-halos and its complex morphology as a merging cluster. For DM annihilating into bbb\overline{b}, assuming a conservative sub-halo model setup, we find limits that are between 1 and 1.5 orders of magnitude above the expectation from the thermal cross section for mDM100GeVm_{\mathrm{DM}}\lesssim100\,\mathrm{GeV}. In a more optimistic scenario, we exclude σv3×1026cm3s1\langle \sigma v \rangle\sim3\times10^{-26}\,\mathrm{cm^{3}\,s^{-1}} for mDM40GeVm_{\mathrm{DM}}\lesssim40\,\mathrm{GeV} for the same channel. Finally, we derive upper limits on the γ\gamma-ray-flux produced by hadronic cosmic-ray interactions in the inter cluster medium. We find that the volume-averaged cosmic-ray-to-thermal pressure ratio is less than 6%\sim6\%.Comment: 15 pages, 11 figures, 4 tables, accepted for publication in ApJ; corresponding authors: T. Jogler, S. Zimmer & A. Pinzk
    corecore