38 research outputs found
Opposing roles of Nfkb2 gene products p100 and p52 in the regulation of breast cancer stem cells
Purpose: Nuclear factor-kappa B (NF-κB) signalling has been shown to regulate properties of breast cancer stem cells. However, the specific contribution of the non-canonical NF-κB pathway, components of which are elevated in aggressive breast cancer has not been addressed. Methods: Through shRNA silencing of the Nfkb2 gene, the role of p100/p52 in 4T1 and N202.1A cell lines were assessed by NF-κB reporter, invasion, tumoursphere and orthotopic transplantation assays. The processing of p100 into p52 was also inhibited with a p97 ATPase inhibitor, NMS-873, and its effects on tumoursphere formation was assessed. Results: Knockdown of Nfkb2 led to opposing changes in NF-κB-dependent transcription. NF-κB activity was elevated in 4T1 cells and this resulted in increased motility, cancer stem cell (CSC) activity and tumourigenicity in vivo. Conversely, depletion of Nfkb2 in N202.1a cells decreased NF-κB activity, CSC properties and tumourigenicity in vivo. By selectively overexpressing the p52 subunit in Nfkb2 depleted cells, we found that the increased malignancy in 4T1 cells could not be reverted in the presence of p52, whereas the decreased tumourigenicity of N202.1a cells could be rescued by p52. These results indicate that p100 and its subunit p52 have opposing effects on breast CSC activity. Accordingly, inhibition of an upstream regulator of p100 processing was effective in reducing tumoursphere formation of N202.1A and SKBR3 (ErbB2 HIGH) cells without aggravating that of 4T1 and MDA-MB-231 (ErbB2LOW) cells. Conclusion: These findings indicate that inhibiting the processing of p100 may be a potential therapeutic strategy to suppress CSC activity in a subset of breast tumours. © 2017, Springer Science+Business Media New York
Palaeo-Shoreline Configuration of the Adventure Plateau (Sicilian Channel) at the Last Glacial Maximum
The Adventure Plateau, located in the NW sector of the Sicilian Channel, experienced several episodes of exposure/erosion and subsequent drowning, with the most recent occurring after the Last Glacial Maximum (LGM). Unlike other parts of the Sicilian Channel, the Adventure Plateau is relatively tectonically stable and is therefore best suitable for reconstructing its coastal configuration before the post-LGM marine transgression. Here, we use high-resolution seismic data to identify and map the palaeo-coastline at the LGM on the basis of the internal architecture of the prograding wedges (i.e., the location of the subaqueous clinoform rollover point) and the erosional markers such as the subaerial unconformities and the wave ravinement surfaces. These data, which show an extreme variability in the palaeo-morphology of the coastal margins of the Adventure Plateau, have been complemented with vintage seismic profiles in order to entirely cover its perimeter. The mapped LGM coastline has then been compared to predictions from glacial isostatic adjustment (GIA) modeling, which considers the horizontal migration of the shorelines in response to sea level rise and to Earth's rotational and deformational effects associated with deglaciation. The two shorelines (i.e., the coastline derived from the marine data interpretation and the one derived from the GIA model) are in good agreement at 21 kyears BP, although some discrepancies occur in the southern part of the plateau, where the seabed slope is extremely gentle, which makes the clinoform rollover points and the buried erosional unconformities difficult to detect. After 20 kyears BP, an acceleration in the rate of the sea level rise occurred. The results of this study indicate the importance of comparing experimental data with model predictions in order to refine and calibrate boundary parameters and to gain a better picture of the evolution of sea level rise over various time scales
Influence of Hepcidin in the Development of Anemia
Anemia presents a global public health problem. It is related to several factors, ranging from deficiency in nutrients from food to genetic alterations in iron absorption and metabolism. In this context, hepcidin is a peptide molecule that regulates iron homeostasis. Hepcidin is synthesized, in part, by hepatocytes. In physiological conditions, increased serum transferrin, serum iron, inflammation, and erythropoiesis trigger stimuli that promote hepcidin antimicrobial peptide (HAMP) gene transcription and hepcidin synthesis. However, in pathological situations, an overexpression of hepcidin occurs, an increase in the plasma concentration that damages the organism. Hepcidin contributes to the pathogenesis of iron deficiency anemia, anemia of inflammation, in hemoglobinopathies. Then, there is a restriction of the availability of iron to the tissues and the formation of new erythroid precursors, with the consequent development of anemia
Disrupted Peyer’s Patch Microanatomy in COVID-19 Including Germinal Centre Atrophy Independent of Local Virus
Confirmed SARS-coronavirus-2 infection with gastrointestinal symptoms and changes in microbiota associated with coronavirus disease 2019 (COVID-19) severity have been previously reported, but the disease impact on the architecture and cellularity of ileal Peyer’s patches (PP) remains unknown. Here we analysed post-mortem tissues from throughout the gastrointestinal (GI) tract of patients who died with COVID-19. When virus was detected by PCR in the GI tract, immunohistochemistry identified virus in epithelium and lamina propria macrophages, but not in lymphoid tissues. Immunohistochemistry and imaging mass cytometry (IMC) analysis of ileal PP revealed depletion of germinal centres (GC), disruption of B cell/T cell zonation and decreased potential B and T cell interaction and lower nuclear density in COVID-19 patients. This occurred independent of the local viral levels. The changes in PP demonstrate that the ability to mount an intestinal immune response is compromised in severe COVID-19, which could contribute to observed dysbiosis
Single-cell mass cytometry reveals the impact of graphene nanomaterials with human primary immune cells
Understanding the interaction of nanomaterials and immune cells at the biomolecular level is of great significance in therapeutic applications. Here, the authors investigated the interaction of graphene oxide nanomaterials and several immune cell subpopulations using single-cell mass cytometry and genome-wide transcriptome analysis
Tumor-activated lymph node fibroblasts suppress T cell function in diffuse large B cell lymphoma
Recent transcriptomic-based analysis of diffuse large B cell lymphoma (DLBCL) has highlighted the clinical relevance of LN fibroblast and tumor-infiltrating lymphocyte (TIL) signatures within the tumor microenvironment (TME). However, the immunomodulatory role of fibroblasts in lymphoma remains unclear. Here, by studying human and mouse DLBCL-LNs, we identified the presence of an aberrantly remodeled fibroblastic reticular cell (FRC) network expressing elevated fibroblast-activated protein (FAP). RNA-Seq analyses revealed that exposure to DLBCL reprogrammed key immunoregulatory pathways in FRCs, including a switch from homeostatic to inflammatory chemokine expression and elevated antigen-presentation molecules. Functional assays showed that DLBCL-activated FRCs (DLBCL-FRCs) hindered optimal TIL and chimeric antigen receptor (CAR) T cell migration. Moreover, DLBCL-FRCs inhibited CD8+ TIL cytotoxicity in an antigen-specific manner. Notably, the interrogation of patient LNs with imaging mass cytometry identified distinct environments differing in their CD8+ TIL-FRC composition and spatial organization that associated with survival outcomes. We further demonstrated the potential to target inhibitory FRCs to rejuvenate interacting TILs. Cotreating organotypic cultures with FAP-targeted immunostimulatory drugs and a bispecific antibody (glofitamab) augmented antilymphoma TIL cytotoxicity. Our study reveals an immunosuppressive role of FRCs in DLBCL, with implications for immune evasion, disease pathogenesis, and optimizing immunotherapy for patients
31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two
Background
The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd.
Methods
We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background.
Results
First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001).
Conclusions
In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
Colistin-associated Acute Kidney Injury in Severely Ill Patients: A Step Toward a Better Renal Care? A Prospective Cohort Study
Background. Critically ill patients with severe sepsis or septic shock may need relatively high colistin daily doses for efficacy against multidrug-resistant and extensively drug-resistant gram-negative rods. However, acute kidney injury (AKI) may represent a major dose-limiting adverse effect of colistin. We sought to determine AKI occurrence and to identify factors influencing AKI risk in severely ill patients receiving colistin according to a recently proposed dosing strategy. Methods. A prospective, observational, cohort study involving patients with severe sepsis or septic shock who received colistin was performed. AKI was defined according to Acute Kidney Injury Network criteria. Colistin administration was driven by a modified pharmacokinetics-pharmacodynamics (PK/PD)-based dosing approach. Results. Of 70 patients who received colistin at a median daily dose of 9 million IU (MIU; interquartile range, 5.87-11.1 MIU), 31 (44%) developed AKI. In univariate analysis, age, Acute Physiology and Chronic Health Evaluation (APACHE) II score, Sequential Organ Failure Assessment (SOFA), score and baseline renal impairment were significantly associated with AKI. Moreover, patients with AKI were less frequently treated with adjuvant ascorbic acid (P =. 003). In multivariate analysis, independent predictors of AKI were baseline renal impairment (adjusted hazard ratio, 4.15; 95% confidence interval, 1.9-9.2; P <. 001) and age (1.03; 1.0-1.05; P =. 028), whereas a strong independent renal-protective role emerged for ascorbic acid (0.27;. 12-.57; P <. 001). Conclusions. In severely ill patients receiving colistin according to a PK/PD-driven dosing approach, baseline renal impairment and older age strongly predict AKI occurrence, but concomitant administration of ascorbic acid markedly reduces AKI risk, allowing safer use of colistin