4,603 research outputs found

    Spatial and temporal variability of soil CO2 flux in sugarcane green harvest systems

    Get PDF
    The sugarcane green harvest system, characterized by mechanized harvesting and the absence of crop burning, affects soil quality by increasing crop residue on the soil surface after harvest; thus, it contributes to improving the physical, chemical, and microbiological properties and influences the soil carbon content and CO2 flux (FCO2). This study aimed to evaluate the spatial and temporal variability of soil FCO2 in sugarcane green harvest systems. The experiment was conducted in two areas of sugarcane in São Paulo, Brazil: the first had a 5-year history of sugarcane green harvest (SG-5) and the second had a longer history of 10 years (SG-10). The temporal FCO2 were evaluated in the dry and rainy periods, and spatial variability in the dry period, and related to soil chemical and physical properties, including organic C porosity, bulk density, soil penetration resistance, mean weight diameter of soil aggregates, clay, P, S, Ca, Mg and Fe. The temporal variability indicated no differences between the dry and rainy periods in SG-10, while in SG-5 soil moisture was increased by 33 % in the rainy period. The spatial variability indicated a different pattern from the temporal one, where FCO2 in SG-10 was correlated with soil temperature, air-filled pore space, total porosity, soil moisture, and the Ca and Mg contents; in the SG-5 area, FCO2 was correlated with soil mean weight diameter of soil aggregates and the sulfur content.4

    Macro and Micro-Nutrient Accumulation and Partitioning in Soybean Affected by Water and Nitrogen Supply

    Get PDF
    This study aimed to investigate the influence of water availability and nitrogen fertilization on plant growth, nutrient dynamics, and variables related to soybean crop yield. Trials were performed in Teresina, Piauí, Brazil, using randomized blocks in a split-split plot arrangement. The plots corresponded to water regimes (full and deficient), the split plots to N fertilization (0 and 1000 kg ha-1 N-urea), and the split-split plots to harvest times of soybean plants (16, 23, 30, 37, 44, 58, 65, 79 and 86 days after emergence), with three replicates. In general, the accumulation and partitioning of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulphur (S), copper (Cu), iron (Fe), manganese (Mn), zinc (Zn) and boron (B) were decreased in plants subjected to water deficit and without N fertilization. Although nitrogen fertilization promoted elevated N accumulation in tissues, it did not result in any significant yield gain, and the highest seed yields were found in plants under full irrigation, regardless of N supplementation. However, deficient irrigation decreased the seed oil content of N-fertilized plants. In conclusion, N fertilization is critical for nutrient homeostasis, and water availability impairs biomass and nutrient accumulation, thereby limiting soybean yield performance

    COVID-19 PICU guidelines: for high- and limited-resource settings

    Full text link
    BACKGROUND: Fewer children than adults have been affected by the COVID-19 pandemic, and the clinical manifestations are distinct from those of adults. Some children particularly those with acute or chronic co-morbidities are likely to develop critical illness. Recently, a multisystem inflammatory syndrome (MIS-C) has been described in children with some of these patients requiring care in the pediatric ICU. METHODS: An international collaboration was formed to review the available evidence and develop evidence-based guidelines for the care of critically ill children with SARS-CoV-2 infection. Where the evidence was lacking, those gaps were replaced with consensus-based guidelines. RESULTS: This process has generated 44 recommendations related to pediatric COVID-19 patients presenting with respiratory distress or failure, sepsis or septic shock, cardiopulmonary arrest, MIS-C, those requiring adjuvant therapies, or ECMO. Evidence to explain the milder disease patterns in children and the potential to use repurposed anti-viral drugs, anti-inflammatory or antithrombotic therapies are also described. CONCLUSION: Brief summaries of pediatric SARS-CoV-2 infection in different regions of the world are included since few registries are capturing this data globally. These guidelines seek to harmonize the standards and strategies for intensive care that critically ill children with COVID-19 receive across the worl

    ANTIFUNGAL POTENTIAL OF PLANT SPECIES FROM BRAZILIAN CAATINGA AGAINST DERMATOPHYTES

    Get PDF
    Trichophyton rubrum and Trichophyton mentagrophytes complex, or Trichophyton spp. are the main etiologic agents of dermatophytosis, whose treatment is limited by the high cost of antifungal treatments, their various side effects, and the emergence of resistance amongst these species. This study evaluated the in vitro antidermatophytic activity of 23 crude extracts from nine plant species of semiarid vegetation (caatinga) found in Brazil. The extracts were tested at concentrations ranging from 1.95 to 1,000.0 mg/mL by broth microdilution assay against the reference strains T. rubrum ATCC 28189 and T. mentagrophytesATCC 11481, and 33 clinical isolates of dermatophytes. All plants showed a fungicidal effect against both fungal species, with MIC/MFC values of the active extracts ranging from 15.6 to 250.0 µg/mL. Selected extracts of Eugenia uniflora (AcE), Libidibia ferrea (AE), and Persea americana (AcE) also exhibited a fungicidal effect against all clinical isolates of T. rubrum and T. mentagrophytes complex. This is the first report of the antifungal activity of Schinus terebinthifolius, Piptadenia colubrina, Parapiptadenia rigida, Mimosa ophthalmocentra, and Persea americana against both dermatophyte species

    Protection against tuberculosis by a single intranasal administration of DNA-hsp65 vaccine complexed with cationic liposomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The greatest challenges in vaccine development include optimization of DNA vaccines for use in humans, creation of effective single-dose vaccines, development of delivery systems that do not involve live viruses, and the identification of effective new adjuvants. Herein, we describe a novel, simple technique for efficiently vaccinating mice against tuberculosis (TB). Our technique consists of a single-dose, genetic vaccine formulation of DNA-hsp65 complexed with cationic liposomes and administered intranasally.</p> <p>Results</p> <p>We developed a novel and non-toxic formulation of cationic liposomes, in which the DNA-hsp65 vaccine was entrapped (ENTR-hsp65) or complexed (COMP-hsp65), and used to immunize mice by intramuscular or intranasal routes. Although both liposome formulations induced a typical Th1 pattern of immune response, the intramuscular route of delivery did not reduce the number of bacilli. However, a single intranasal immunization with COMP-hsp65, carrying as few as 25 μg of plasmid DNA, leads to a remarkable reduction of the amount of bacilli in lungs. These effects were accompanied by increasing levels of IFN-γ and lung parenchyma preservation, results similar to those found in mice vaccinated intramuscularly four times with naked DNA-hsp65 (total of 400 μg).</p> <p>Conclusion</p> <p>Our objective was to overcome the significant obstacles currently facing DNA vaccine development. Our results in the mouse TB model showed that a single intranasal dose of COMP-hsp65 elicited a cellular immune response that was as strong as that induced by four intramuscular doses of naked-DNA. This formulation allowed a 16-fold reduction in the amount of DNA administered. Moreover, we demonstrated that this vaccine is safe, biocompatible, stable, and easily manufactured at a low cost. We believe that this strategy can be applied to human vaccines to TB in a single dose or in prime-boost protocols, leading to a tremendous impact on the control of this infectious disease.</p
    corecore