36,590 research outputs found

    Agent-oriented Modeling for Collaborative Learning Environments: A Peer-to-Peer Helpdesk Case Study

    Get PDF
    In this paper, we present the analysis and modelling of Help&Learn, an agent-based peer-to-peer helpdesk system to support extra-class interactions among students and teachers. Help&Learn expands the student’s possibility of solving problems, getting involved in a cooperative learning experience that transcends the limits of classrooms. To model Help&Learn, we have used Agent-Object-Relationship Modeling Language (AORML), an UML extension for agent-oriented information systems modeling. The aim of this research is two-fold. On one hand, we aim at modeling the variety of roles and the complexity of their interactions and activities within the Help&Learn system. On the other hand, we aim at showing the expressive power and the modeling strengths of AORML

    Thermal entanglement witness for materials with variable local spin lengths

    Get PDF
    We show that the thermal entanglement in a spin system using only magnetic susceptibility measurements is restricted to the insulator materials. We develop a generalization of the thermal entanglement witness that allows us to get information about the system entanglement with variable local spin lengths that can be used experimentally in conductor or insulator materials. As an application, we study thermal entanglement for the half-filled Hubbard model for linear, square and cubic clusters. We note that it is the itinerancy of electrons that favors the entanglement. Our results suggest a weak dependence between entanglement and external spin freedom degrees.Comment: 4 pages, 3 figure

    Effects of geometric constraints on the nuclear multifragmentation process

    Get PDF
    We include in statistical model calculations the facts that in the nuclear multifragmentation process the fragments are produced within a given volume and have a finite size. The corrections associated with these constraints affect the partition modes and, as a consequence, other observables in the process. In particular, we find that the favored fragmenting modes strongly suppress the collective flow energy, leading to much lower values compared to what is obtained from unconstrained calculations. This leads, for a given total excitation energy, to a nontrivial correlation between the breakup temperature and the collective expansion velocity. In particular we find that, under some conditions, the temperature of the fragmenting system may increase as a function of this expansion velocity, contrary to what it might be expected.Comment: 16 pages, 5 figure

    Impact of Power Allocation and Antenna Directivity in the Capacity of a Multiuser Cognitive Ad Hoc Network

    Get PDF
    This paper studies the benefits that power control and antenna directivity can bring to the capacity of a multiuser cognitive radio network. The main objective is to optimize the secondary network sum rate under the capacity constraint of the primary network. Exploiting location awareness, antenna directivity, and the power control capability, the cognitive radio ad hoc network can broaden its coverage and improve capacity. Computer simulations show that by employing the proposed method the system performance is significantly enhanced compared to conventional fixed power allocation

    Statistical multifragmentation model with discretized energy and the generalized Fermi breakup. I. Formulation of the model

    Full text link
    The Generalized Fermi Breakup recently demonstrated to be formally equivalent to the Statistical Multifragmentation Model, if the contribution of excited states are included in the state densities of the former, is implemented. Since this treatment requires the application of the Statistical Multifragmentation Model repeatedly on the hot fragments until they have decayed to their ground states, it becomes extremely computational demanding, making its application to the systems of interest extremely difficult. Based on exact recursion formulae previously developed by Chase and Mekjian to calculate the statistical weights very efficiently, we present an implementation which is efficient enough to allow it to be applied to large systems at high excitation energies. Comparison with the GEMINI++ sequential decay code shows that the predictions obtained with our treatment are fairly similar to those obtained with this more traditional model.Comment: 8 pages, 6 figure

    Wannier-based calculation of the orbital magnetization in crystals

    Get PDF
    We present a first-principles scheme that allows the orbital magnetization of a magnetic crystal to be evaluated accurately and efficiently even in the presence of complex Fermi surfaces. Starting from an initial electronic-structure calculation with a coarse ab initio k-point mesh, maximally localized Wannier functions are constructed and used to interpolate the necessary k-space quantities on a fine mesh, in parallel to a previously-developed formalism for the anomalous Hall conductivity [X.Wang, J. Yates, I. Souza, and D. Vanderbilt, Phys. Rev. B 74, 195118 (2006)]. We formulate our new approach in a manifestly gauge-invariant manner, expressing the orbital magnetization in terms of traces over matrices in Wannier space. Since only a few (e.g., of the order of 20) Wannier functions are typically needed to describe the occupied and partially occupied bands, these Wannier matrices are small, which makes the interpolation itself very efficient. The method has been used to calculate the orbital magnetization of bcc Fe, hcp Co, and fcc Ni. Unlike an approximate calculation based on integrating orbital currents inside atomic spheres, our results nicely reproduce the experimentally measured ordering of the orbital magnetization in these three materials.Comment: 13 pages, 3 figures, 4 table

    Analytical Multi-kinks in smooth potentials

    Full text link
    In this work we present an approach which can be systematically used to construct nonlinear systems possessing analytical multi-kink profile configurations. In contrast with previous approaches to the problem, we are able to do it by using field potentials which are considerably smoother than the ones of Doubly Quadratic family of potentials. This is done without losing the capacity of writing exact analytical solutions. The resulting field configurations can be applied to the study of problems from condensed matter to brane world scenarios
    corecore