200 research outputs found

    Leprosy: Why does it persist among us?

    Get PDF
    Despite a substantial reduction in its global prevalence since 1990s, leprosy transmission continues unabated and remains a significant public health problem. The causes for its persistence are multi-factorial, ranging from the lack of implementation of contact tracing, the skill-dependent diagnostic method with over reliance on clinical recognition; to its strong linkages to social inequality and inequity. Leprosy control and elimination is still an enormous challenge for governments and scientists and the answer for this complex problem needs to be multifaceted, which includes higher research investments to identify risk areas, novel and better diagnostics and therapeutic tools and a reduction of social inequalities

    LaMMos - Latching Mechanism based on Motorized-screw for Reconfigurable Robots and Exoskeleton Suits

    Full text link
    Reconfigurable robots refer to a category of robots that their components (individual joints and links) can be assembled in multiple configurations and geometries. Most of existing latching mechanisms are based on physical tools such as hooks, cages or magnets, which limit the payload capacity. Therefore, robots re- quire a latching mechanism which can help to reconfigure itself without sacrificing the payload capability. This paper presents a latching mechanism based on the flexible screw attaching principle. In which, actuators are used to move the robot links and joints while connecting them with a motorized-screw and dis- connecting them by unfastening the screw. The brackets used in our mechanism configuration helps to hold maximum force up to 5000N. The LaMMos - Latching Mechanism based on Motorized- screw has been applied to the DeWaLoP - Developing Water Loss Prevention in-pipe robot. It helps the robot to shrink its body to crawl into the pipe with minimum diameter, by recon- figuring the leg positions. And it helps to recover the legs positions to original status once the robot is inside the pipe. Also, LaMMos add stiffness to the robot legs by dynamically integrate them to the structure. Additionally, we present an application of the LaMMos mechanism to exoskeleton suits, for easing the mo- tors from the joints when carrying heavy weights for long periods of time. This mechanism offers many interesting opportunities for robotics research in terms of functionality, pay- load and size.Comment: 14 pages, 15 figure

    Addition of probiotic in mineral mixture enhances weight gain in bovine during dry season

    Get PDF
    This study investigated the effect of Proenzime® probiotic added to protein-mineral mixture on the weight gain of cattle reared in extensive system on Brachiaria brizantha pasture. The 114 Nelore uncastrated male calves (Bos indicus) used, about 15 months of age, were randomly divided into 2 groups (57 animals each): the control group (GC) received only protein-mineral mixture while the probiotic group (PG) received this mixture supplemented with Proenzime® probiotic. The animals were weighted on days 0 and 150. The results indicate a significant increase in the weight gains of the PG calves. Considering the experimental conditions and the results obtained, it is concluded that the addition of Proenzime® probiotic to the protein-mineral mixture leads to increase in weight gain of cattle and thus higher economic feedback

    Risk factors for physical disability in patients with leprosy: a systematic review and meta analysis

    Get PDF
    Abstract Importance: The World Health Organization (WHO) 2016–2020 Global Leprosy Strategy aims to reinvigorate efforts to control leprosy and avert leprosy disability to less than one per million population. Objective: This study aimed to identify systematically clinical factors associated with physical disability in patients with leprosy. Data source: Searches were performed in Scopus, PubMed and Web of Science databases to identify studies published up to May 2018, using the keywords leprosy and physical disability and related terms. Study selection: We included studies that evaluated patients using the WHO leprosy disability grading and reported the number of patients with and without disability by clinical characteristics. Data Extraction and Synthesis: The study was conducted following the Meta-Analysis of Observational Studies in Epidemiology (MOOSE) statement. We used the odds ratio (OR) as a measure of association between the clinical features and physical disability. Summary estimates were calculated using random-effects models. Main Outcome(s) and Measure(s): Our primary outcome was physical disability according the WHO disability classification. We evaluated the association between clinical features and physical disability. Results: Thirty-two studies were included in the systematic review. Males were more likely to have physical disability than females (pooled OR: 1.66; CI95% 1.43-1.93). Multibacillary (MB) leprosy were 4-fold more likely to have physical disability than paucibacillary (PB) leprosy 4 patients (pooled OR 4.32; CI95% 3.37-5.53). Patients having leprosy reactions were more likely to have disability (pooled OR 2.43, CI95% 1.35-4.36). Patients with lepromatous leprosy experienced 5- to 12-fold higher odds of disability. Conclusion and Relevance: This systematic review and meta-analysis confirms the strong association between the presence of physical disabilities and male gender, MB leprosy, leprosy reactions and lepromatous presentation. These findings can guide the development of targeted interventions to identify early individuals at greater risk of developing physical disabilities and education campaigns to promote early consultation to institute treatment for leprosy reactions and to prevent physical disability

    GWAS in Breast Cancer

    Get PDF
    Breast cancer is the most diagnosed cancer in women, and the second cause of cancer-related deaths among women worldwide. It is expected that more than 240,000 new cases and 40,450 deaths related to the disease will occur in 2016. It is well known that inherited genetic variants are drivers for breast cancer development. There are many mechanisms through which germline genetic variation affects prognosis, such as BRCA1 and BRCA2 genes, which account for approximately 20% of the increased hereditary risks. Therefore, it is evident that the genetic pathways that underlie cancer development are complex in which networks of multiple alleles confer disease susceptibility and risks. Global analyses through genome-wide association studies (GWAS) have revealed several loci across the genome are associated with the breast cancer. This chapter compiles all breast GWAS released since 2007, year of the first article published in this area, and discuss the future directions of this field. Currently, hundreds of genetic markers are linked to breast cancer, and understanding the underlying mechanisms of these variants might lead to the discover of biomarkers and targets for therapy in patients

    Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests

    Get PDF
    Funding: Data collection was largely funded by the UK Natural Environment Research Council (NERC) project TREMOR (NE/N004655/1) to D.G., E.G. and O.P., with further funds from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES, finance code 001) to J.V.T. and a University of Leeds Climate Research Bursary Fund to J.V.T. D.G., E.G. and O.P. acknowledge further support from a NERC-funded consortium award (ARBOLES, NE/S011811/1). This paper is an outcome of J.V.T.’s doctoral thesis, which was sponsored by CAPES (GDE 99999.001293/2015-00). J.V.T. was previously supported by the NERC-funded ARBOLES project (NE/S011811/1) and is supported at present by the Swedish Research Council Vetenskapsrådet (grant no. 2019-03758 to R.M.). E.G., O.P. and D.G. acknowledge support from NERC-funded BIORED grant (NE/N012542/1). O.P. acknowledges support from an ERC Advanced Grant and a Royal Society Wolfson Research Merit Award. R.S.O. was supported by a CNPq productivity scholarship, the São Paulo Research Foundation (FAPESP-Microsoft 11/52072-0) and the US Department of Energy, project GoAmazon (FAPESP 2013/50531-2). M.M. acknowledges support from MINECO FUN2FUN (CGL2013-46808-R) and DRESS (CGL2017-89149-C2-1-R). C.S.-M., F.B.V. and P.R.L.B. were financed by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES, finance code 001). C.S.-M. received a scholarship from the Brazilian National Council for Scientific and Technological Development (CNPq 140353/2017-8) and CAPES (science without borders 88881.135316/2016-01). Y.M. acknowledges the Gordon and Betty Moore Foundation and ERC Advanced Investigator Grant (GEM-TRAITS, 321131) for supporting the Global Ecosystems Monitoring (GEM) network (gem.tropicalforests.ox.ac.uk), within which some of the field sites (KEN, TAM and ALP) are nested. The authors thank Brazil–USA Collaborative Research GoAmazon DOE-FAPESP-FAPEAM (FAPESP 2013/50533-5 to L.A.) and National Science Foundation (award DEB-1753973 to L. Alves). They thank Serrapilheira Serra-1709-18983 (to M.H.) and CNPq-PELD/POPA-441443/2016-8 (to L.G.) (P.I. Albertina Lima). They thank all the colleagues and grants mentioned elsewhere [8,36] that established, identified and measured the Amazon forest plots in the RAINFOR network analysed here. The authors particularly thank J. Lyod, S. Almeida, F. Brown, B. Vicenti, N. Silva and L. Alves. This work is an outcome approved Research Project no. 19 from ForestPlots.net, a collaborative initiative developed at the University of Leeds that unites researchers and the monitoring of their permanent plots from the world’s tropical forests [61]. The authros thank A. Levesley, K. Melgaço Ladvocat and G. Pickavance for ForestPlots.net management. They thank Y. Wang and J. Baker, respectively, for their help with the map and with the climatic data. The authors acknowledge the invaluable help of M. Brum for kindly providing the comparison of vulnerability curves based on PAD and on PLC shown in this manuscript. They thank J. Martinez-Vilalta for his comments on an early version of this manuscript. The authors also thank V. Hilares and the Asociación para la Investigación y Desarrollo Integral (AIDER, Puerto Maldonado, Peru); V. Saldaña and Instituto de Investigaciones de la Amazonía Peruana (IIAP) for local field campaign support in Peru; E. Chavez and Noel Kempff Natural History Museum for local field campaign support in Bolivia; ICMBio, INPA/NAPPA/LBA COOMFLONA (Cooperativa mista da Flona Tapajós) and T. I. Bragança-Marituba for the research support.Tropical forests face increasing climate risk1,2, yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, Ψ50) and hydraulic safety margins (for example, HSM50) are important predictors of drought-induced mortality risk3-5, little is known about how these vary across Earth's largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation. Parameters Ψ50 and HSM50 vary markedly across the Amazon and are related to average long-term rainfall characteristics. Both Ψ50 and HSM50 influence the biogeographical distribution of Amazon tree species. However, HSM50 was the only significant predictor of observed decadal-scale changes in forest biomass. Old-growth forests with wide HSM50 are gaining more biomass than are low HSM50 forests. We propose that this may be associated with a growth-mortality trade-off whereby trees in forests consisting of fast-growing species take greater hydraulic risks and face greater mortality risk. Moreover, in regions of more pronounced climatic change, we find evidence that forests are losing biomass, suggesting that species in these regions may be operating beyond their hydraulic limits. Continued climate change is likely to further reduce HSM50 in the Amazon6,7, with strong implications for the Amazon carbon sink.Publisher PDFPeer reviewe
    corecore