141 research outputs found

    Cancer Inhibition and In Vivo Osteointegration and Compatibility of Gallium-Doped Bioactive Glasses for Osteosarcoma Applications

    Get PDF
    Traditional osteosarcoma therapies tend to focus solely on eradicating residual cancer cells and often fail to promote local bone regeneration and even inhibit it due to lack of precise control over target cells, i.e., the treatment affects both normal and cancer cells. Typically, multistep procedures are required for optimal efficacy. Here, we found that a silica-based bioactive material containing 3 mol % gallium oxide selectively kills human osteosarcoma cells and presents excellent in vivo osteointegration, while showing no local or systemic toxicity. Cell culture media conditioned with the proposed material was able to kill 41% of osteosarcoma cells, and no significant deleterious effect on normal human osteoblasts was observed. In addition, rats treated with the gallium-doped material showed excellent material–bone integration with no sign of local toxicity or implant rejection. Systemic biocompatibility investigation did not indicate any sign of toxicity, with no presence of fibrosis or cellular infiltrate in the histological microstructure of the liver and kidneys after 56 days of observation. Taken together, these results show that synergistic bone regeneration and targeted cancer therapy can be combined, paving the way toward new bone cancer treatment approaches

    Combining eutectic solvents and pressurized liquid extraction coupled in-line with solid-phase extraction to recover, purify and stabilize anthocyanins from Brazilian berry waste

    Get PDF
    Pressurized techniques are straightforward for high-scale applications and highly controllable, which seems an excellent strategy for recovering unstable natural compounds. In this work, the main advance was the development of a platform based on the pressurized liquid extraction coupled in-line with a solid-phase extraction step (PLE-SPE) combined with the use of eutectic mixtures as solvents to promote an efficient extraction and purification of natural pigments from food wastes. Eutectic mixtures, conventionally known as (deep) eutectic solvents – (D)ES, are combinations of two or more substances with a lower melting point than any of their components. (D)ES are often referred as “green solvents” because they can potentially be more environmentally friendly than other solvents, especially volatile organic solvents (VOSs). Overall, (D)ES have the potential to contribute to the achievement of several of the SDGs (especially 3, 13, and 14) through their positive impacts on health, environment, and sustainable production and consumption practices. Thus, in this work, (D)ES were used as solvents to valorize Brazilian berry waste (Plinia cauliflora). Anthocyanins are the biomass's main compounds of commercial interest, mainly for food and cosmetic applications. However, there are several technological issues regarding color control due to their high sensitivity to light, heat, oxygen, and pH variations. Thus, the data achieved in this work highlighted the high efficiency and low environmental footprint of the PLE-SPE-(D)ES platform developed. The success of the downstream process here developed was proved by the high extraction efficiency and the purity level of the anthocyanins obtained. Besides, thermal stability analysis was evaluated, demonstrating that (D)ES are not only solvents but also stabilizing agents, improving the shelf-life of the extracted colorants.publishe

    Theoretical and experimental study on electron interactions with chlorobenzene: Shape resonances and differential cross sections

    Get PDF
    In this work, we report theoretical and experimental cross sections for elastic scattering of electrons by chlorobenzene (ClB). The theoretical integral and differential cross sections (DCSs) were obtained with the Schwinger multichannel method implemented with pseudopotentials (SMCPP) and the independent atom method with screening corrected additivity rule (IAM-SCAR). The calculations with the SMCPP method were done in the static-exchange (SE) approximation, for energies above 12 eV, and in the static-exchange plus polarization approximation, for energies up to 12 eV. The calculations with the IAM-SCAR method covered energies up to 500 eV. The experimental differential cross sections were obtained in the high resolution electron energy loss spectrometer VG-SEELS 400, in Lisbon, for electron energies from 8.0 eV to 50 eV and angular range from 7 degrees to 110 degrees. From the present theoretical integral cross section (ICS) we discuss the low-energy shape-resonances present in chlorobenzene and compare our computed resonance spectra with available electron transmission spectroscopy data present in the literature. Since there is no other work in the literature reporting differential cross sections for this molecule, we compare our theoretical and experimental DCSs with experimental data available for the parent molecule benzene. Published by AIP Publishing

    Evaluation of effectiveness of 45S5 bioglass doped with niobium for repairing critical-sized bone defect in in vitro and in vivo models

    Get PDF
    Here, we investigated the biocompatibility of a bioactive sodium calcium silicate glass containing 2.6 mol% Nb2O5 (denoted BGPN2.6) and compare the results with the archetypal 45S5 bioglass. The glass bioactivity was tested using a range of in vitro and in vivo experiments to assess its suitability for bone regeneration applications. in vitro studies consisted of assessing the cytocompatibility of the BGPN2.6 glass with bone-marrow-derived mesenchymal stem cells (BM-MSCs). Systemic biocompatibility was verified by means of the quantification of biochemical markers and histopathology of liver, kidneys, and muscles. The glass genotoxicity was assessed using the micronucleus test. The regeneration of a calvarial defect was assessed using both qualitative and quantitative analysis of three-dimensional microcomputed tomography images. The BGPN2.6 glass was not cytotoxic to BM-MSCs. It is systemically biocompatible causing no signs of damage to high metabolic and excretory organs such as the liver and kidneys. No mutagenic potential was observed in the micronucleus test. MicroCT images showed that BGPN2.6 was able to nearly fully regenerate a critical-sized calvarial defect and was far superior to standard 45S5 Bioglass. Defects filled with BGPN2.6 glass showed over 90% coverage compare to just 66% for 45S5 Bioglass. For one animal the defect was completely filled in 8 weeks. These results clearly show that Nb-containing bioactive glasses are a safe and effective biomaterial for bone replacement

    Polymer composites reinforced with natural fibers and nanocellulose in the automotive industry: a short review

    Get PDF
    Environmental concerns and cost reduction have encouraged the use of natural fillers as reinforcement in polymer composites. Currently, a wide variety of reinforcement, such as natural fibers and nanocellulose, are used for this purpose. Composite materials with natural fillers have not only met the environmental appeal, but also contribute to developing low-density materials with improved properties. The production of natural fillers is unlimited around the world, and many species are still to be discovered. Their processing is considered beneficial since the natural fillers do not cause corrosion or great wear of the equipment. For these reasons, polymer reinforced with natural fillers has been considered a good alternative for obtaining ecofriendly materials for several applications, including the automotive industry. This review explores the use of natural fillers (natural fibers, cellulose nanocrystals, and nanofibrillated cellulose) as reinforcement in polymer composites for the automotive industry323172016/09588-9; 2016/09588-9; 2016/09588-9CAPES - Coordenação de Aperfeiçoamento de Pessoal e Nível SuperiorCNPQ - Conselho Nacional de Desenvolvimento Científico e TecnológicoFAPESP – Fundação de Amparo à Pesquisa Do Estado De São Paul

    In vitro and in vivo osteogenic potential of niobium-doped 45S5 bioactive glass:A comparative study

    Get PDF
    In vitro and in vivo experiments were undertaken to evaluate the solubility, apatite-forming ability, cytocompatibility, osteostimulation, and osteoinduction for a series of Nb-containing bioactive glass (BGNb) derived from composition of 45S5 Bioglass. Inductively coupled plasma optical emission spectrometry (ICP-OES) revealed that the rate at which Na, Ca, Si, P, and Nb species are leached from the glass decrease with the increasing concentration of the niobium oxide. The formation of apatite as a function of time in simulated body fluid was monitored by 31P Magic Angle Spinning (MAS) Nuclear magnetic resonance spectroscopy. Results showed that the bioactive glasses: Bioglass 45S5 (BG45S5) and 1 mol%-Nb-containing-bioactive glass (BGSN1) were able to grow apatite layer on their surfaces within 3 h, while glasses with higher concentrations of Nb2O5 (2.5 and 5 mol%) took at least 12 h. Nb-substituted glasses were shown to be compatible with bone marrow-derived mesenchymal stem cells (BMMSCs). Moreover, the bioactive glass with 1 mol% Nb2O5 significantly enhanced cell proliferation after 4 days of treatment. Concentrations of 1 and 2.5 mol% Nb2O5 stimulated osteogenic differentiation of BMMSCs after 21 days of treatment. For the in vivo experiments, trial glass rods were implanted into circular defects in rat tibia in order to evaluate their osteoconductivity and osteostimulation. Two morphometric parameters were analyzed: (a) thickness of new-formed bone layer and (b) area of new-formed subperiostal bone. Results showed that BGNb bioactive glass is osteoconductive and osteostimulative. Therefore, these results indicate that Nb-substituted glass is suitable for biomedical applications

    Nanocellulose/bioactive glass cryogels as scaffolds for bone regeneration

    Get PDF
    A major challenge exists in the preparation of scaffolds for bone regeneration, namely, achieving simultaneously bioactivity, biocompatibility, mechanical performance and simple manufacturing. Here, cellulose nanofibrils (CNF) are introduced for the preparation of scaffolds taking advantage of their biocompatibility and ability to form strong 3D porous networks from aqueous suspensions. CNF are made bioactive for bone formation through a simple and scalable strategy that achieves highly interconnected 3D networks. The resultant materials optimally combine morphological and mechanical features and facilitate hydroxyapatite formation while releasing essential ions for in vivo bone repair. The porosity and roughness of the scaffolds favor several cell functions while the ions act in the expression of genes associated with cell differentiation. Ion release is found critical to enhance the production of the bone morphogenetic protein 2 (BMP-2) from cells within the fractured area, thus accelerating the in vivo bone repair. Systemic biocompatibility indicates no negative effects on vital organs such as the liver and kidneys. The results pave the way towards a facile preparation of advanced, high performance CNF-based scaffolds for bone tissue engineering

    Apoptosis-like cell death in Leishmania donovani treated with KalsomeTM10, a new liposomal amphotericin B

    Get PDF
    The present study aimed to elucidate the cell death mechanism in Leishmania donovani upon treatment with KalsomeTM10, a new liposomal amphotericin B. Methodology/Principal findings We studied morphological alterations in promastigotes through phase contrast and scanning electron microscopy. Phosphatidylserine (PS) exposure, loss of mitochondrial membrane potential and disruption of mitochondrial integrity was determined by flow cytometry using annexinV-FITC, JC-1 and mitotraker, respectively. For analysing oxidative stress, generation of H2O2 (bioluminescence kit) and mitochondrial superoxide O2 − (mitosox) were measured. DNA fragmentation was evaluated using terminal deoxyribonucleotidyl transferase mediated dUTP nick-end labelling (TUNEL) and DNA laddering assay. We found that KalsomeTM10 is more effective then Ambisome against the promastigote as well as intracellular amastigote forms. The mechanistic study showed that KalsomeTM10 induced several morphological alterations in promastigotes typical of apoptosis. KalsomeTM10 treatment showed a dose- and time-dependent exposure of PS in promastigotes. Further,study on mitochondrial pathway revealed loss of mitochondrial membrane potential as well as disruption in mitochondrial integrity with depletion of intracellular pool of ATP. KalsomeTM10 treated promastigotes showed increased ROS production, diminished GSH levels and increased caspase-like activity. DNA fragmentation and cell cycle arrest was observed in KalsomeTM10 treated promastigotes. Apoptotic DNA fragmentation was also observed in KalsomeTM10 treated intracellular amastigotes. KalsomeTM10 induced generation of ROS and nitric oxide leads to the killing of the intracellular parasites. Moreover, endocytosis is indispensable for KalsomeTM10 mediated anti-leishmanial effect in host macrophag
    corecore