18 research outputs found

    Cellulose nanocrystal-based poly(butylene adipate-co-terephthalate) nanocomposites covered with antimicrobial silver thin films

    Get PDF
    In this study, we reported the preparation and prospective application of the nanocomposites of poly(butylene adipate-co-terephthalate) (PBAT) reinforced with cellulose nanocrystals (CNCs). CNCs were isolated from bleached sugarcane bagasse by acid hydrolysis and functionalized with adipic acid. Nanocomposites were prepared with different concentration of CNCs (0.8, 1.5, and 2.3 wt% CNC) by solution-casting method and then were covered with silver thin film by magnetron sputtering. The results showed that the surface modification increased the degree of crystallinity of nanocrystals from 51% to 56%, decreasing their length and diameter. Moreover, AFM-IR spectroscopy revealed that the modified CNCs were covered by adipic acid molecules, improving the dispersion of nanocrystals in PBAT. Well-dispersed modified CNCs acted as heterogeneous nuclei for crystallization of PBAT, and increased the storage modulus of the polymer by more than 200%. These improvements in thermal and mechanical properties of CNC-based PBAT associated with the decrease of 56% in the Escherichia coli biofilm formation on nanocomposites (antibacterial properties) qualify the CNC/PBAT nanocomposites covered with silver thin films to be used as food packaging. POLYM. ENG. SCI., 59:E356-E365, 2019. (c) 2019 Society of Plastics Engineers59s22E356E365CNPQ - Conselho Nacional de Desenvolvimento Científico e TecnológicoNÃO CONSTANÃO CONSTA2016/09588-9CAPES - Coordenação de Aperfeiçoamento de Pessoal e Nível SuperiorFAPESP – Fundação de Amparo à Pesquisa Do Estado De São Paul

    Measurement of inclusive and differential cross sections for single top quark production in association with a W boson in proton-proton collisions at s \sqrt{s} = 13 TeV

    No full text
    International audienceMeasurements of the inclusive and normalised differential cross sections are presented for the production of single top quarks in association with a W boson in proton-proton collisions at a centre-of-mass energy of 13 TeV. The data used were recorded with the CMS detector at the LHC during 2016–2018, and correspond to an integrated luminosity of 138 fb1^{−1}. Events containing one electron and one muon in the final state are analysed. For the inclusive measurement, a multivariate discriminant, exploiting the kinematic properties of the events is used to separate the signal from the dominant tt \textrm{t}\overline{\textrm{t}} background. A cross section of 79.2±0.9(stat)8.0+7.7(syst)±1.2(lumi) 79.2\pm 0.9{\left(\textrm{stat}\right)}_{-8.0}^{+7.7}\left(\textrm{syst}\right)\pm 1.2\left(\textrm{lumi}\right) pb is obtained, consistent with the predictions of the standard model. For the differential measurements, a fiducial region is defined according to the detector acceptance, and the requirement of exactly one jet coming from the fragmentation of a bottom quark. The resulting distributions are unfolded to particle level and agree with the predictions at next-to-leading order in perturbative quantum chromodynamics.[graphic not available: see fulltext

    Search for pair production of vector-like quarks in leptonic final states in proton-proton collisions at s \sqrt{s} = 13 TeV

    No full text
    A search is presented for vector-like T \mathrm{T} and B \mathrm{B} quark-antiquark pairs produced in proton-proton collisions at a center-of-mass energy of 13 TeV. Data were collected by the CMS experiment at the CERN LHC in 2016-2018, with an integrated luminosity of 138 fb1 ^{-1} . Events are separated into single-lepton, same-sign charge dilepton, and multilepton channels. In the analysis of the single-lepton channel a multilayer neural network and jet identification techniques are employed to select signal events, while the same-sign dilepton and multilepton channels rely on the high-energy signature of the signal to distinguish it from standard model backgrounds. The data are consistent with standard model background predictions, and the production of vector-like quark pairs is excluded at 95% confidence level for T \mathrm{T} quark masses up to 1.54 TeV and B \mathrm{B} quark masses up to 1.56 TeV, depending on the branching fractions assumed, with maximal sensitivity to decay modes that include multiple top quarks. The limits obtained in this search are the strongest limits to date for TT \mathrm{T} \overline{\mathrm{T}} production, excluding masses below 1.48 TeV for all decays to third generation quarks, and are the strongest limits to date for BB \mathrm{B} \overline{\mathrm{B}} production with B \mathrm{B} quark decays to tW.A search is presented for vector-like T and B quark-antiquark pairs produced in proton-proton collisions at a center-of-mass energy of 13 TeV. Data were collected by the CMS experiment at the CERN LHC in 2016–2018, with an integrated luminosity of 138 fb1^{−1}. Events are separated into single-lepton, same-sign charge dilepton, and multi-lepton channels. In the analysis of the single-lepton channel a multilayer neural network and jet identification techniques are employed to select signal events, while the same-sign dilepton and multilepton channels rely on the high-energy signature of the signal to distinguish it from standard model backgrounds. The data are consistent with standard model background predictions, and the production of vector-like quark pairs is excluded at 95% confidence level for T quark masses up to 1.54 TeV and B quark masses up to 1.56 TeV, depending on the branching fractions assumed, with maximal sensitivity to decay modes that include multiple top quarks. The limits obtained in this search are the strongest limits to date for TT \textrm{T}\overline{\textrm{T}} production, excluding masses below 1.48 TeV for all decays to third generation quarks, and are the strongest limits to date for BB \textrm{B}\overline{\textrm{B}} production with B quark decays to tW.[graphic not available: see fulltext]A search is presented for vector-like T and B quark-antiquark pairs produced in proton-proton collisions at a center-of-mass energy of 13 TeV. Data were collected by the CMS experiment at the CERN LHC in 2016-2018, with an integrated luminosity of 138 fb1^{-1}. Events are separated into single-lepton, same-sign charge dilepton, and multilepton channels. In the analysis of the single-lepton channel a multilayer neural network and jet identification techniques are employed to select signal events, while the same-sign dilepton and multilepton channels rely on the high-energy signature of the signal to distinguish it from standard model backgrounds. The data are consistent with standard model background predictions, and the production of vector-like quark pairs is excluded at 95% confidence level for T quark masses up to 1.54 TeV and B quark masses up to 1.56 TeV, depending on the branching fractions assumed, with maximal sensitivity to decay modes that include multiple top quarks. The limits obtained in this search are the strongest limits to date for TT\mathrm{T\overline{T}} production, excluding masses below 1.48 TeV for all decays to third generation quarks, and are the strongest limits to date for BB\mathrm{B\overline{B}} production with B quark decays to tW

    Measurement of the Higgs boson inclusive and differential fiducial production cross sections in the diphoton decay channel with pp collisions at s \sqrt{s} = 13 TeV

    No full text
    International audienceThe measurements of the inclusive and differential fiducial cross sections of the Higgs boson decaying to a pair of photons are presented. The analysis is performed using proton-proton collisions data recorded with the CMS detector at the LHC at a centre-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 137 fb1^{−1}. The inclusive fiducial cross section is measured to be σfid=73.45.3+5.4(stat)2.2+2.4(syst) {\sigma}_{\textrm{fid}}={73.4}_{-5.3}^{+5.4}{\left(\textrm{stat}\right)}_{-2.2}^{+2.4}\left(\textrm{syst}\right) fb, in agreement with the standard model expectation of 75.4 ± 4.1 fb. The measurements are also performed in fiducial regions targeting different production modes and as function of several observables describing the diphoton system, the number of additional jets present in the event, and other kinematic observables. Two double differential measurements are performed. No significant deviations from the standard model expectations are observed.[graphic not available: see fulltext

    Probing heavy Majorana neutrinos and the Weinberg operator through vector boson fusion processes in proton-proton collisions at s=\sqrt{s} = 13 TeV

    No full text
    The first search exploiting the vector boson fusion process to probe heavy Majorana neutrinos and the Weinberg operator at the LHC is presented. The search is performed in the same-sign dimuon final state using a proton-proton collision data set recorded at s=\sqrt{s} = 13 TeV, collected with the CMS detector and corresponding to a total integrated luminosity of 138 fb1^{-1}. The results are found to agree with the predictions of the standard model. For heavy Majorana neutrinos, constraints on the squared mixing element between the muon and the heavy neutrino are derived in the heavy neutrino mass range 50 GeV-25 TeV; for masses above 650 GeV these are the most stringent constraints from searches at the LHC to date. A first test of the Weinberg operator at colliders provides an observed upper limit at 95% confidence level on the effective μμ\mu\mu Majorana neutrino mass of 10.8 GeV.The first search exploiting the vector boson fusion process to probe heavy Majorana neutrinos and the Weinberg operator at the LHC is presented. The search is performed in the same-sign dimuon final state using a proton-proton collision dataset recorded at s=13  TeV, collected with the CMS detector and corresponding to a total integrated luminosity of 138  fb−1. The results are found to agree with the predictions of the standard model. For heavy Majorana neutrinos, constraints on the squared mixing element between the muon and the heavy neutrino are derived in the heavy neutrino mass range 50 GeV–25 TeV; for masses above 650 GeV these are the most stringent constraints from searches at the LHC to date. A first test of the Weinberg operator at colliders provides an observed upper limit at 95% confidence level on the effective μμ Majorana neutrino mass of 10.8 GeV.The first search exploiting the vector boson fusion process to probe heavy Majorana neutrinos and the Weinberg operator at the LHC is presented. The search is performed in the same-sign dimuon final state using a proton-proton collision data set recorded at s\sqrt{s} = 13 TeV, collected with the CMS detector and corresponding to a total integrated luminosity of 138 fb1^{-1}. The results are found to agree with the predictions of the standard model. For heavy Majorana neutrinos, constraints on the squared mixing element between the muon and the heavy neutrino are derived in the heavy neutrino mass range 50 GeV-25 TeV; for masses above 650 GeV these are the most stringent constraints from searches at the LHC to date. A first test of the Weinberg operator at colliders provides an observed upper limit at 95% confidence level on the effective μμ\mu\mu Majorana neutrino mass of 10.8 GeV

    Measurement of the top quark pole mass using tt \textrm{t}\overline{\textrm{t}} +jet events in the dilepton final state in proton-proton collisions at s \sqrt{s} = 13 TeV

    No full text
    A measurement of the top quark pole mass mtpole{{m_{\mathrm{t}}} ^{\text{pole}}} in events where a top quark-antiquark pair (ttˉ\mathrm{t\bar{t}}) is produced in association with at least one additional jet (ttˉ\mathrm{t\bar{t}}+jet) is presented. This analysis is performed using proton-proton collision data at s=\sqrt{s} = 13 TeV collected by the CMS experiment at the CERN LHC, corresponding to a total integrated luminosity of 36.3 fb1^{-1}. Events with two opposite-sign leptons in the final state (e+^{+}e^{-}, μ+μ\mu^{+}\mu^{-}, e±μ^{\pm}\mu^{\mp}) are analyzed. The reconstruction of the main observable and the event classification are optimized using multivariate analysis techniques based on machine learning. The production cross section is measured as a function of the inverse of the invariant mass of the ttˉ\mathrm{t\bar{t}}+jet system at the parton level using a maximum likelihood unfolding. Given a reference parton distribution function (PDF), the top quark pole mass is extracted using the theoretical predictions at next-to-leading order. For the ABMP16NLO PDF, this results in mtpole={{m_{\mathrm{t}}} ^{\text{pole}}} = 172.94 ±\pm 1.37 GeV.A measurement of the top quark pole mass mtpole {m}_{\textrm{t}}^{\textrm{pole}} in events where a top quark-antiquark pair (tt \textrm{t}\overline{\textrm{t}} ) is produced in association with at least one additional jet (tt \textrm{t}\overline{\textrm{t}} +jet) is presented. This analysis is performed using proton-proton collision data at s \sqrt{s} = 13 TeV collected by the CMS experiment at the CERN LHC, corresponding to a total integrated luminosity of 36.3 fb1^{−1}. Events with two opposite-sign leptons in the final state (e+^{+}e^{−}, μ+^{+}μ^{−}, e±^{±}μ^{∓}) are analyzed. The reconstruction of the main observable and the event classification are optimized using multivariate analysis techniques based on machine learning. The production cross section is measured as a function of the inverse of the invariant mass of the tt \textrm{t}\overline{\textrm{t}} +jet system at the parton level using a maximum likelihood unfolding. Given a reference parton distribution function (PDF), the top quark pole mass is extracted using the theoretical predictions at next-to-leading order. For the ABMP16NLO PDF, this results in mtpole {m}_{\textrm{t}}^{\textrm{pole}} = 172.93 ± 1.36 GeV.[graphic not available: see fulltext]A measurement of the top quark pole mass mtpolem_\mathrm{t}^\text{pole} in events where a top quark-antiquark pair (ttˉ\mathrm{t\bar{t}}) is produced in association with at least one additional jet (ttˉ\mathrm{t\bar{t}}+jet) is presented. This analysis is performed using proton-proton collision data at s\sqrt{s} = 13 TeV collected by the CMS experiment at the CERN LHC, corresponding to a total integrated luminosity of 36.3 fb1^{-1}. Events with two opposite-sign leptons in the final state (e+^+e^-, μ+μ\mu^+\mu^-, e±μ^\pm\mu^\mp) are analyzed. The reconstruction of the main observable and the event classification are optimized using multivariate analysis techniques based on machine learning. The production cross section is measured as a function of the inverse of the invariant mass of the ttˉ\mathrm{t\bar{t}}+jet system at the parton level using a maximum likelihood unfolding. Given a reference parton distribution function (PDF), the top quark pole mass is extracted using the theoretical predictions at next-to-leading order. For the ABMP16NLO PDF, this results in mtpolem_\mathrm{t}^\text{pole} = 172.93 ±\pm 1.36 GeV

    Search for nonresonant Higgs boson pair production in the four leptons plus two b jets final state in proton-proton collisions at s=\sqrt{s} = 13 TeV

    No full text
    The first search for nonresonant production of Higgs boson pairs (HH) with one H decaying into four leptons and the other into a pair of b quarks is presented, using proton-proton collisions recorded at a center-of-mass energy of s=\sqrt{s} = 13 TeV by the CMS experiment. The analyzed data correspond to an integrated luminosity of 138 fb1^{-1}. A 95% confidence level upper limit of 32.4 is set on the signal strength modifier μ\mu, defined as the ratio of the observed HH production rate in the HHZZbbˉ4bbˉ{\mathrm{H}\mathrm{H}} \to\mathrm{Z}\mathrm{Z}^{*}\mathrm{b}\mathrm{\bar{b}}\to 4\ell\mathrm{b}\mathrm{\bar{b}} decay channel to the standard model expectation. Possible modifications of the H trilinear coupling λHHH\lambda_\text{HHH} with respect to the standard model (SM) value are investigated. The coupling modifier κλ\kappa_{\lambda}, defined as λHHH\lambda_\text{HHH} divided by its SM prediction, is constrained to be within the observed (expected) range -8.8 (-9.8) <κλ< < \kappa_{\lambda} < 13.4 (15.0) at 95% confidence level.The first search for nonresonant production of Higgs boson pairs (HH) with one H decaying into four leptons and the other into a pair of b quarks is presented, using proton-proton collisions recorded at a center-of-mass energy of s \sqrt{s} = 13 TeV by the CMS experiment. The analyzed data correspond to an integrated luminosity of 138 fb1^{−1}. A 95% confidence level upper limit of 32.4 is set on the signal strength modifier μ, defined as the ratio of the observed HH production rate in the HHZZbb4bb \textrm{HH}\to {\textrm{ZZ}}^{\ast}\textrm{b}\overline{\textrm{b}}\to 4\ell \textrm{b}\overline{\textrm{b}} decay channel to the standard model (SM) expectation. Possible modifications of the H trilinear coupling λHHH_{HHH} with respect to the SM value are investigated. The coupling modifier κλ_{λ}, defined as λHHH_{HHH} divided by its SM prediction, is constrained to be within the observed (expected) range −8.8 (−9.8) < κλ_{λ}< 13.4 (15.0) at 95% confidence level.[graphic not available: see fulltext]The first search for nonresonant production of Higgs boson pairs (HH) with one H decaying into four leptons and the other into a pair of b quarks is presented, using proton-proton collisions recorded at a center-of-mass energy of s\sqrt{s} = 13 TeV by the CMS experiment. The analyzed data correspond to an integrated luminosity of 138 fb1^{-1}. A 95% confidence level upper limit of 32.4 is set on the signal strength modifier μ\mu, defined as the ratio of the observed HH production rate in the HH \to ZZ*bbˉ\mathrm{\bar{b}} \to 4\ellbbˉ\mathrm{\bar{b}} decay channel to the standard model expectation. Possible modifications of the H trilinear coupling λHHH\lambda_\text{HHH} with respect to the standard model (SM) value are investigated. The coupling modifier κλ\kappa_{\lambda}, defined as λHHH\lambda_\text{HHH} divided by its SM prediction, is constrained to be within the observed (expected) range -8.8 (-9.8) << κλ\kappa_{\lambda} << 13.4 (15.0) at 95% confidence level

    Searches for additional Higgs bosons and for vector leptoquarks in ττ\tau\tau final states in proton-proton collisions at s=\sqrt{s} = 13 TeV

    No full text
    Three searches are presented for signatures of physics beyond the standard model (SM) in ττ\tau\tau final states in proton-proton collisions at the LHC, using a data sample collected with the CMS detector at s=\sqrt{s} = 13 TeV, corresponding to an integrated luminosity of 138 fb1^{-1}. Upper limits at 95% confidence level (CL) are set on the products of the branching fraction for the decay into τ\tau leptons and the cross sections for the production of a new boson ϕ\phi, in addition to the H(125) boson, via gluon fusion (ggϕ\phi) or in association with b quarks, ranging from O{\mathcal{O}}(10 pb) for a mass of 60 GeV to 0.3 fb for a mass of 3.5 TeV each. The data reveal two excesses for ggϕ\phi production with local pp-values equivalent to about three standard deviations at mϕ={m_{\phi}} = 0.1 and 1.2 TeV. In a search for tt-channel exchange of a vector leptoquark U1_{1}, 95% CL upper limits are set on the dimensionless U1_{1} leptoquark coupling to quarks and τ\tau leptons ranging from 1 for a mass of 1 TeV to 6 for a mass of 5 TeV, depending on the scenario. In the interpretations of the Mh125{M_{\mathrm{h}}^{125}} and Mh,EFT125{M_{\mathrm{h},\,\text{EFT}}^{125}} minimal supersymmetric SM benchmark scenarios, additional Higgs bosons with masses below 350 GeV are excluded at 95% CL.Three searches are presented for signatures of physics beyond the standard model (SM) in ττ final states in proton-proton collisions at the LHC, using a data sample collected with the CMS detector at s \sqrt{s} = 13 TeV, corresponding to an integrated luminosity of 138 fb1^{−1}. Upper limits at 95% confidence level (CL) are set on the products of the branching fraction for the decay into τ leptons and the cross sections for the production of a new boson ϕ, in addition to the H(125) boson, via gluon fusion (ggϕ) or in association with b quarks, ranging from O \mathcal{O} (10 pb) for a mass of 60 GeV to 0.3 fb for a mass of 3.5 TeV each. The data reveal two excesses for ggϕ production with local p-values equivalent to about three standard deviations at mϕ_{ϕ} = 0.1 and 1.2 TeV. In a search for t-channel exchange of a vector leptoquark U1_{1}, 95% CL upper limits are set on the dimensionless U1_{1} leptoquark coupling to quarks and τ leptons ranging from 1 for a mass of 1 TeV to 6 for a mass of 5 TeV, depending on the scenario. In the interpretations of the Mh125 {M}_{\textrm{h}}^{125} and Mh,EFT125 {M}_{\textrm{h},\textrm{EFT}}^{125} minimal supersymmetric SM benchmark scenarios, additional Higgs bosons with masses below 350 GeV are excluded at 95% CL.[graphic not available: see fulltext]Three searches are presented for signatures of physics beyond the standard model (SM) in ττ\tau\tau final states in proton-proton collisions at the LHC, using a data sample collected with the CMS detector at s\sqrt{s} = 13 TeV, corresponding to an integrated luminosity of 138 fb1^{-1}. Upper limits at 95% confidence level (CL) are set on the products of the branching fraction for the decay into τ\tau leptons and the cross sections for the production of a new boson ϕ\phi, in addition to the H(125) boson, via gluon fusion (ggϕ\phi) or in association with b quarks, ranging from O\mathcal{O}(10 pb) for a mass of 60 GeV to 0.3 fb for a mass of 3.5 TeV each. The data reveal two excesses for ggϕ\phi production with local pp-values equivalent to about three standard deviations at mϕm_\phi = 0.1 and 1.2 TeV. In a search for tt-channel exchange of a vector leptoquark U1_1, 95% CL upper limits are set on the dimensionless U1_1 leptoquark coupling to quarks and τ\tau leptons ranging from 1 for a mass of 1 TeV to 6 for a mass of 5 TeV, depending on the scenario. In the interpretations of the Mh125M_\mathrm{h}^{125} and Mh,EFT125M_\mathrm{h, EFT}^{125} minimal supersymmetric SM benchmark scenarios, additional Higgs bosons with masses below 350 GeV are excluded at 95% CL
    corecore