79 research outputs found

    Agronomic performance of interspecific Paspalum hybrids under nitrogen fertilization or mixed with legumes

    Get PDF
    Nitrogen supply and mixtures with legumes affect agronomic performance of pas- tures, and both practices can guide breeding decisions in Paspalum hybrids. The goals of this study were: (a) quantify herbage accumulation (HA), leaf accumulation (LA), cold tolerance, and N use efficiency (NUE) in P. plicatulum × P. guenoarum hybrids subjected to N fertilization or grown in a mixture with legumes; (b) compare the grass–legume system to a grass–N fertilizer system; and (c) select the best hybrid for future cultivar releases. A randomized complete block design with three repli- cations and a split-plot treatment arrangement was used for 2 yr, with five N rates (0, 60, 120, 240, and 480 kg N ha−1) and a grass–legume mixture [grass + white clover (Trifolium repens L.) + birdsfoot trefoil (Lotus corniculatus L.)] as whole plots, and six genotypes as subplots (hybrids: 1020133, 102069, 103084, 103061; and controls: P. guenoarum ‘Azulão’ and Megathyrsus maximus ‘Aruana’). Higher N rates increased HA, LA, and cold tolerance. Higher NUE was obtained between 60 and 120 kg N ha−1. In the grass–legume mixture HA was similar to the rates of 60 and 120 kg N ha−1. Hybrid 1020133 had HA similar to the controls, LA greater than Aruana, and greater cold tolerance and NUE at 60 kg N ha−1 than Azulão and Aruana. Hybrid 1020133 should be selected for further animal performance stud- ies. The agronomic performance of perennial pastures can be improved through N management, and NUE should be a selection criterion in forage breeding

    Assessments of productive performance, eggshell quality, excreta moisture, and incubation traits of laying breeder hens fed a proprietary blend of Quillaja and Yucca

    Get PDF
    A study was conducted to evaluate performance, eggshell quality, nutrient metabolizability, and incubation traits of laying breeder hens fed diets supplemented with an additive containing polyphenols and saponins of a proprietary blend from Quillaja saponaria and Yucca schidigera (QY) biomass. Hens were fed 4 feeds in 5 periods of 28 days each from 30 to 49 weeks of age. Experimental feeds were a Control diet; Control + virginiamycin (33 g/ton); Control + QY (250 g/ton) and Control + virginiamycin + QY. A total of 40 White Plymouth Rock and 44 Rhode Island Red breeder hens were allocated in individual cages using a completely randomized block design with 21 replicates. Performance parameters, evaluated per period, were egg production, egg weight, FCR, egg mass, and culled eggs. All eggs were collected in the last 4 days of each period to evaluate specific egg weight, percentage of albumen, yolk and shell, and Haugh unit as well as cuticle quality, shell strength, and shell thickness. At the end of the experiment, nutrient metabolizability assessment and four incubations were conducted. There were no interactions between diet and period in all evaluated responses (P > 0.05). Experimental diets did not affect daily egg production, egg weight, and egg mass as well as Haugh unit, yolk and albumen percentage, and yolk color (P > 0.05). However, hens fed Control + QY produced eggs with better shell strength, shell thickness, and cuticle quality than hens fed the Control (P < 0.05). Hens fed Control + QY or Control + virginiamycin + QY had lower culled eggs, better FCR and higher egg specific weight, shell percentage, and yolk strength compared to breeder hens fed the Control (P < 0.05). In general, hens fed QY achieved enhanced performance and egg quality compared to virginiamycin. In conclusion, laying breeder hens fed diets supplemented with Quillaja and Yucca additive, from 30 to 49 weeks of age, maintained their productive performance, had improved eggshell and cuticle quality and reduced culled, dirty and contaminated eggs

    Granulocyte-Colony Stimulating Factor-Overexpressing Mesenchymal Stem Cells Exhibit Enhanced Immunomodulatory Actions Through the Recruitment of Suppressor Cells in Experimental Chagas Disease Cardiomyopathy

    Get PDF
    Genetic modification of mesenchymal stem cells (MSCs) is a promising strategy to improve their therapeutic effects. Granulocyte-colony stimulating factor (G-CSF) is a growth factor widely used in the clinical practice with known regenerative and immunomodulatory actions, including the mobilization of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). Here we evaluated the therapeutic potential of MSCs overexpressing G-CSF (MSC_G-CSF) in a model of inflammatory cardiomyopathy due to chronic Chagas disease. C57BL/6 mice were treated with wild-type MSCs, MSC_G-CSF, or vehicle (saline) 6 months after infection with Trypanosoma cruzi. Transplantation of MSC_G-CSF caused an increase in the number of circulating leukocytes compared to wild-type MSCs. Moreover, G-CSF overexpression caused an increase in migration capacity of MSCs to the hearts of infected mice. Transplantation of either MSCs or MSC_G-CSF improved exercise capacity, when compared to saline-treated chagasic mice. MSC_G-CSF mice, however, were more potent than MSCs in reducing the number of infiltrating leukocytes and fibrosis in the heart. Similarly, MSC_G-CSF-treated mice presented significantly lower levels of inflammatory mediators, such as IFNγ, TNFα, and Tbet, with increased IL-10 production. A marked increase in the percentage of Tregs and MDSCs in the hearts of infected mice was seen after administration of MSC_G-CSF, but not MSCs. Moreover, Tregs were positive for IL-10 in the hearts of T. cruzi-infected mice. In vitro analysis showed that recombinant hG-CSF and conditioned medium of MSC_G-CSF, but not wild-type MSCs, induce chemoattraction of MDSCs in a transwell assay. Finally, MDSCs purified from hearts of MSC_G-CSF transplanted mice inhibited the proliferation of activated splenocytes in a co-culture assay. Our results demonstrate that G-CSF overexpression by MSCs potentiates their immunomodulatory effects in our model of Chagas disease and suggest that mobilization of suppressor cell populations such as Tregs and MDSCs as a promising strategy for the treatment of chronic Chagas disease. Finally, our results reinforce the therapeutic potential of genetic modification of MSCs, aiming at increasing their paracrine actions

    Co-limitation towards lower latitudes shapes global forest diversity gradients

    Get PDF
    The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers

    Systematic analysis of copy number variants of a large cohort of orofacial cleft patients identifies candidate genes for orofacial clefts

    Get PDF

    Metabolic substrates are not mobilized from the osmoregulatory organs (gills and kidney) of the estuarine pufferfishes Sphoeroides greeleyi and S. testudineus upon short-term salinity reduction

    No full text
    The marine-estuarine species of pufferfishes Sphoeroides testudineus and S. greeleyi are very efficient osmoregulators. However, they differ with respect to their tolerance of salinity reduction. During low tide S. testudineus remains in diluted estuarine waters, whereas S. greeleyi returns to seawater (SW). The hypothesis tested here was that the short-term mobilization of metabolic substrates stored in their main osmoregulatory organs would correlate with this differential tolerance. Fishes exposed to 5‰ (for 6 h) were compared to those kept in 35‰. Branchial and renal contents of triglycerides, protein and glycogen were evaluated, and total ATPase activity accounted for the tissues' metabolism. Plasma osmolality, chloride and glucose, hematocrit, and muscle water content were also measured. Total triacylglycerol content was higher in S. greeleyi than in S. testudineus in both salinities and in both organs. Kidney glycogen contents were higher in S. greeleyi than in S. testudineus in 5 and 35‰. Total ATPase activity was reduced in 5‰ when compared to 35‰ in the kidney of S. greeleyi, and was higher in the gills of S. greeleyi than in those of S. testudineus, in both salinities. Upon exposure to dilute SW, both species displayed a similar osmoregulatory pattern: plasma osmolality and chloride were reduced. Again in both species, stability in muscle water content indicated cellular water content control. Although the metabolic substrates stored in the osmoregulatory organs of both species were not mobilized during these short-term sea water dilution events, some differences could be revealed between the two species. S. greeleyi showed more metabolic reserves (essentially triacylglycerols) in these organs, and its gills showed higher total ATPase activity than those S. testudineus
    corecore