33 research outputs found

    Sidon Sets in Groups and Induced Subgraphs of Cayley Graphs

    Get PDF
    Let S be a subset of a group G. We call S a Sidon subset of the first (second) kind, if for any x, y, z, w ∈ S of which at least 3 are different, xy ≠ zw (xy-1 ≠ zw-1, resp.). (For abelian groups, the two notions coincide.) If G has a Sidon subset of the second kind with n elements then every n-vertex graph is an induced subgraph of some Cayley graph of G. We prove that a sufficient condition for G to have a Sidon subset of order n (of either kind) is that (❘G❘ ⩾ cn3. For elementary Abelian groups of square order, ❘G❘ ⩾ n2 is sufficient. We prove that most graphs on n vertices are not induced subgraphs of any vertex transitive graph with <cn2/log2n vertices. We comment on embedding trees and, in particular, stars, as induced subgraphs of Cayley graphs, and on the related problem of product-free (sum-free) sets in groups. We summarize the known results on the cardinality of Sidon sets of infinite groups, and formulate a number of open problems.We warn the reader that the sets considered in this paper are different from the Sidon sets Fourier analysts investigate

    Sur un corps non dénombrable de nombres réels

    No full text
    Le but de cette note est de définir un corps non dénombrable de nombres réels n'en contenant pas la totalité

    Non σ-finite closed subsets of analytic sets

    No full text

    The smooth ideal

    No full text
    corecore