540 research outputs found

    The Role of Sexual and Romantic Attraction in Human Mate Preferences

    Get PDF
    Sex differences in mate preferences are ubiquitous, having been evidenced across generations and cultures. Their prevalence and persistence have compellingly placed them in the evolutionarily adaptive context of sexual selection. However, the psycho-biological mechanisms contributing to their generation and maintenance remain poorly understood. As such a mechanism, sexual attraction is assumed to guide interest, desire, and the affinity toward specific partner features. However, whether sexual attraction can indeed explain sex differences in partner preferences has not been explicitly tested. To better understand how sex and sexual attraction shape mate preferences in humans we assessed how partner preferences differed across the spectrum of sexual attraction in a sample of 479 individuals that identified as asexual, gray-sexual, demisexual or allosexual. We further tested whether romantic attraction predicted preference profiles better than sexual attraction. Our results show that sexual attraction accounts for highly replicable sex differences in mate preferences for high social status and financial prospects, conscientiousness, and intelligence; however, it does not account for the enhanced preference for physical attractiveness expressed by men, which persists even in individuals with low sexual attraction. Instead, sex differences in physical attractiveness preference are better explained by the degree of romantic attraction. Furthermore, effects of sexual attraction on sex differences in partner preferences were grounded in current rather than previous experiences of sexual attraction. Taken together, the results support the idea that contemporary sex differences in partner preferences are maintained by several psycho-biological mechanisms that evolved in conjunction, including not only sexual but also romantic attraction

    Sociocultural Pressures, Internalization, and Body Esteem in Congenitally Blind, Late-Blind, and Sighted Men and Women

    Get PDF
    Introduction: Visual experience has a substantial effect on how individuals construct a template of their own bodies in space. Whether the absence of total or partial visual exposure in individuals of both genders allows the buffering of harmful effects has yet to be tested. This study examined the role of vision among congenitally blind and later blind subjects for the expression of body esteem and sociocultural attitudes toward appearance. Methods: Participants comprised 101 subjects, 53 sighted and 48 visually impaired men and women. For the purpose of the study, we took into consideration congenitally blind, late blind, and typically sighted individuals. The Sociocultural Attitudes toward Appearance Questionnaire-3 (SATAQ-3) and the Body-Esteem Scale Questionnaire (BESQ) were used as measures. Results: Although congenitally blind, late blind, and typically sighted individuals showed similar awareness of media content and beauty ideals, typically sighted women displayed higher pressure to conform and had higher levels of social comparison. Congenitally blind women placed less emphasis on mass media as an influential aspect of their body perception and showed reduced internalization of beauty ideals and higher levels of body esteem. Moreover, men with visual impairments considered siblings and family to be the most influential information sources for their own body perception, while showing reduced levels of athlete internalization. Discussion: In this research, it was identified that the absence of sight influences an individual's body image beyond its physical, metric representation. Susceptibility to detrimental messages linked to sociocultural standards of attractiveness is interiorized by individuals with and without visual impairments, regardless of their gender. Implications for Practitioners: Further studies on body esteem and sociocultural pressures could enable practitioners to better understand how to support individuals with visual impairments in coping with an unhealthy social environment and with feelings of unhappiness related to their appearance

    What can volumes reveal about human brain evolution?:A framework for bridging behavioral, histometric, and volumetric perspectives

    Get PDF
    An overall relationship between brain size and cognitive ability exists across primates. Can more specific information about neural function be gleaned from cortical area volumes? Numerous studies have found significant relationships between brain structures and behaviors. However, few studies have speculated about brain structure-function relationships from the microanatomical to the macroanatomical level. Here we address this problem in comparative neuroanatomy, where the functional relevance of overall brain size and the sizes of cortical regions have been poorly understood, by considering comparative psychology, with measures of visual acuity and the perception of visual illusions. We outline a model where the macroscopic size (volume or surface area) of a cortical region (such as the primary visual cortex, V1) is related to the microstructure of discrete brain regions. The hypothesis developed here is that a larger absolute V1 can process more information with greater fidelity due to having more neurons to represent a field of space. This is the first time that the necessary comparative neuroanatomical research at the microstructural level has been brought to bear on the issue. The evidence suggests that as the size of V1 increases: the number of neurons increases, the neuron density decreases, and the density of neuronal connections increases. Thus, we describe how information about gross neuromorphology, using V1 as a model for the study of other cortical areas, may permit interpretations of cortical function

    A Virtual Reality Application of the Rubber Hand Illusion Induced by Ultrasonic Mid-Air Haptic Stimulation

    Get PDF
    Ultrasonic mid-air haptic technologies, which provide haptic feedback through airwaves produced using ultrasound, could be employed to investigate the sense of body ownership and immersion in virtual reality (VR) by inducing the virtual hand illusion (VHI). Ultrasonic mid-air haptic perception has solely been investigated for glabrous (hairless) skin, which has higher tactile sensitivity than hairy skin. In contrast, the VHI paradigm typically targets hairy skin without comparisons to glabrous skin. The aim of this article was to investigate illusory body ownership, the applicability of ultrasonic mid-air haptics, and perceived immersion in VR using the VHI. Fifty participants viewed a virtual hand being stroked by a feather synchronously and asynchronously with the ultrasonic stimulation applied to the glabrous skin on the palmar surface and the hairy skin on the dorsal surface of their hands. Questionnaire responses revealed that synchronous stimulation induced a stronger VHI than asynchronous stimulation. In synchronous conditions, the VHI was stronger for palmar stimulation than dorsal stimulation. The ultrasonic stimulation was also perceived as more intense on the palmar surface compared to the dorsal surface. Perceived immersion was not related to illusory body ownership per se but was enhanced by the provision of synchronous stimulation

    Visual-to-auditory sensory substitution alters language asymmetry in both sighted novices and experienced visually impaired users

    Get PDF
    Visual-to-auditory sensory substitution devices (SSDs) provide improved access to the visual environment for the visually impaired by converting images into auditory information. Research is lacking on the mechanisms involved in processing data that is perceived through one sensory modality, but directly associated with a source in a different sensory modality. This is important because SSDs that use auditory displays could involve binaural presentation requiring both ear canals, or monaural presentation requiring only one – but which ear would be ideal? SSDs may be similar to reading, as an image (printed word) is converted into sound (when read aloud). Reading, and language more generally, are typically lateralised to the left cerebral hemisphere. Yet, unlike symbolic written language, SSDs convert images to sound based on visuospatial properties, with the right cerebral hemisphere potentially having a role in processing such visuospatial data. Here we investigated whether there is a hemispheric bias in the processing of visual-to-auditory sensory substitution information and whether that varies as a function of experience and visual ability. We assessed the lateralization of auditory processing with two tests: a standard dichotic listening test and a novel dichotic listening test created using the auditory information produced by an SSD, The vOICe. Participants were tested either in the lab or online with the same stimuli. We did not find a hemispheric bias in the processing of visual-to-auditory information in visually impaired, experienced vOICe users. Further, we did not find any difference between visually impaired, experienced vOICe users and sighted novices in the hemispheric lateralization of visual-to-auditory information processing. Although standard dichotic listening is lateralised to the left hemisphere, the auditory processing of images in SSDs is bilateral, possibly due to the increased influence of right hemisphere processing. Auditory SSDs might therefore be equally effective with presentation to either ear if a monaural, rather than binaural, presentation were necessary

    A volumetric comparison of the insular cortex and its subregions in primates

    Get PDF
    The neuronal composition of the insula in primates displays a gradient, transitioning from granular neocortex in the posterior-dorsal insula to agranular neocortex in the anterior-ventral insula with an intermediate zone of dysgranularity. Additionally, apes and humans exhibit a distinctive subdomain in the agranular insula, the frontoinsular cortex (FI), defined by the presence of clusters of von Economo neurons (VENs). Studies in humans indicate that the ventral anterior insula, including agranular insular cortex and FI, is involved in social awareness, and that the posterodorsal insula, including granular and dysgranular cortices, produces an internal representation of the body's homeostatic state. We examined the volumes of these cytoarchitectural areas of insular cortex in 30 primate species, including the volume of FI in apes and humans. Results indicate that the whole insula scales hyperallometrically (exponent = 1.13) relative to total brain mass, and the agranular insula (including FI) scales against total brain mass with even greater positive allometry (exponent = 1.23), providing a potential neural basis for enhancement of social cognition in association with increased brain size. The relative volumes of the subdivisions of the insular cortex, after controlling for total brain volume, are not correlated with species typical social group size. Although its size is predicted by primate-wide allometric scaling patterns, we found that the absolute volume of the left and right agranular insula and left FI are among the most differentially expanded of the human cerebral cortex compared to our closest living relative, the chimpanzee
    • …
    corecore