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Abstract 

Visual-to-auditory sensory substitution devices (SSDs) provide improved access to the visual 

environment for the visually impaired by converting images into auditory information. Research 

is lacking on the mechanisms involved in processing data that is perceived through one sensory 

modality, but directly associated with a source in a different sensory modality. This is important 

because SSDs that use auditory displays could involve binaural presentation requiring both ear 

canals, or monaural presentation requiring only one – but which ear would be ideal? SSDs may 

be similar to reading, as an image (printed word) is converted into sound (when read aloud). 

Reading, and language more generally, are typically lateralised to the left cerebral hemisphere. 

Yet, unlike symbolic written language, SSDs convert images to sound based on visuospatial 

properties, with the right cerebral hemisphere potentially having a role in processing such 

visuospatial data.  Here we investigated whether there is a hemispheric bias in the processing of 

visual-to-auditory sensory substitution information and whether that varies as a function of 

experience and visual ability. We assessed the lateralization of auditory processing with two 

tests: a standard dichotic listening test and a novel dichotic listening test created using the 

auditory information produced by an SSD, The vOICe. Participants were tested either in the lab 

or online with the same stimuli. We did not find a hemispheric bias in the processing of visual-

to-auditory information in visually impaired, experienced vOICe users. Further, we did not find 

any difference between visually impaired, experienced vOICe users and sighted novices in the 

hemispheric lateralization of visual-to-auditory information processing. Although standard 

dichotic listening is lateralised to the left hemisphere, the auditory processing of images in SSDs 

is bilateral, possibly due to the increased influence of right hemisphere processing. Auditory 

SSDs might therefore be equally effective with presentation to either ear if a monaural, rather 

than binaural, presentation were necessary.  
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Introduction 

A person’s ability to coherently perceive the world around them requires an acute 

understanding of many types of stimuli. However, the absence of a sensory modality (e.g., sight 

in visual impairments) limits access to the full richness of the external world. In a world mostly 

designed by the sighted for visual perception, visual impairment has a negative impact on many 

aspects of the lives of estimated 252 million visually impaired individuals (Bourne et al., 2017), 

such as decreased employability (Cavenaugh & Giesen, 2012; Goertz, van Lierop, Houkes, & 

Nijhuis, 2010) and increased likelihood of experiencing accidents such as falls (Ivers, Cumming, 

Mitchell, & Attebo, 1998) and suffering from anxiety or depression (Langelaan et al., 2007).  

Yet there are techniques that enable the translation of one type of sensory information 

(e.g., sight) into another format (e.g., hearing or touch) for the sensory impaired (Bach-y-Rita & 

Kercel, 2003; Ghazanfar & Schroeder, 2006; Kim & Zatorre, 2008). One such technique is to 

adapt sensory processing via sensory substitution, implemented in sensory substitution devices 

(SSDs).  SSDs are a form of assistive technology used to help compensate for missing sensory 

input by translating the information to a format to be processed by a functioning sensory system 

(Gregory, 2003; Renier & De Volder, 2010). These are generally made of three components: an 

input device (e.g., a camera to capture visual information), specialised software to convert the 

information from the input device into a different format and an output device (e.g., headphones 

or a tactile unit). SSDs aim to mitigate some of the challenges caused by visual impairment by 

providing improved access to the visual environment via alternate sensory information (Hara, 

2015; Michael J Proulx et al., 2016; Sigalov, Maidenbaum, & Amedi, 2016; Striem-Amit, Bubic, 

& Amedi, 2012). Although SSDs have been studied in terms of their effectiveness, the 

ergonomics of their use has been neglected. Here we will review the different types of devices, 

their effectiveness, and perform a study of the fundamental neural basis for auditory processing 

with one to inform the ergonomics of its use.  
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There are two main types of SSDs that convert visual information to either (i) tactile or 

(ii) auditory information. Visual-to-tactile SSDs have been studied extensively using various 

sites of stimulation such as the back, fingers and the tongue (Bach-y-Rita & Kercel, 2003), with 

the latter in particular identified an effective location due to its high sensitivity and mobility and 

therefore used in the commercially-available BrainPort by Wicab (Bach-y-Rita, Kaczmarek, 

Tyler, & Garcia-Lara, 1998; Sampaio, Maris, & Bachy-y-Rita, 2001). In studies using the 

BrainPort, both blind and blindfolded sighted participants successfully performed simple object 

and shape recognition (Ptito, Moesgaard, Gjedde, & Kupers, 2005), orientation and mobility 

(Chebat, Schneider, Kupers, & Ptito, 2011), and word and letter recognition tasks (Nau, Pintar, 

Arnoldussen, & Fisher, 2015). However, from an ergonomic perspective, visual-to-tactile SSDs 

in general have limited resolution and acuity in comparison to other visual-to-auditory SSDs 

(Brown & Proulx, 2016) and have been found to cause irritation at point of stimulation (Auvray 

& Myin, 2009).  

Visual-to-auditory SSDs, on the other hand, are cheaper, less intrusive, and afford higher 

resolution than visual-to-tactile SSDs (Brown & Proulx, 2016), suggesting that they may be 

particularly beneficial for the visually impaired.  One example of a visual-to-auditory SSD, and 

also the one used in the present study, is The vOICe (Meijer, 1992).  This free-to-download 

software captures visual information via a standard webcam, breaks the image down to roughly 

4000 greyscale pixels, and converts each pixel to an auditory signal using the following 

principles. First, pixel luminance is coded to auditory amplitude with brighter pixels eliciting 

louder sounds. Second, vertical pixel position is coded to auditory frequency (500-5000Hz) with 

higher pixel elevation generating logarithmically higher pitched auditory tones. Third, horizontal 

pixel position is coded to both stereo pan and a temporal scan: the device scans from the left to 

the right across the visual field with pixels to the left being heard early in the scan and to the left 

side of the stereo auditory field. The auditory signal corresponding to the entire captured visual 
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field is updated at the set scan rate (1 second by default), and is known as a soundscape. These 

soundscapes are relayed back to the user in real time via standard or bone conduction 

headphones. 

Research using The vOICe has addressed the question of how well people can learn to 

‘see’ through the soundscapes. Auvray, Hanneton and O’Regan (2007) demonstrated that novice, 

blindfolded participants were able to localise, recognise and discriminate between objects after 

an extensive 3-hour device-led training session. Pollok et al. (2005) found similar competency in 

users trained over a 3-week period; Proulx and colleagues demonstrated that participants could 

learn to use the device by active use at home, and formal training was not required (Michael J. 

Proulx, Stoerig, Ludowig, & Knoll, 2008). Ward and Meijer (2010) even found that long-term 

late (non-congenital) blind users of The vOICe reported to be able to ‘see’ with considerable 

detail while using the device due to visual memory evoked imagery  

While such research demonstrates that even naïve users of SSDs can learn to recognise 

and localise objects, avoid obstacles and navigate in complex environments with minimal 

training, and long-term visually impaired users can indeed reconstruct percepts with considerable 

detail, much is still unknown about the neural mechanisms of how information during sensory 

substitution is processed and reconstructed into different formats. One uninvestigated area of 

research is hemispheric lateralization and how it can be applied to improve the current status quo 

for the users of visual-to-auditory SSDs. For example, The vOICe users need to attend to the 

soundscapes via stereo headphones using both ears. This is not practical in everyday situations 

where ambient sounds are the major source of environmental awareness to those with visual 

impairments. It might be possible to process mono soundscapes equally or at least sufficiently 

effectively using just one ear (Brown & Proulx, 2013). To our knowledge, it is not known 

whether users can effectively use visual-to-auditory sensory substitution in one ear, and whether 

a hemispheric lateralization bias might suggest that one ear rather than the other might be 
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optimal for such use. This is crucial for the ergonomics of using this class of sensory substitution 

devices given that the mode of auditory presentation can influence optimal performance for the 

user. With our particular focus on hemispheric lateralization, we are examining the 

neuroergonomics of the use of the device in particular. That is, we are taking under consideration 

the combination of brain function and user performance to evaluate the use of sensory 

substitution to represent images with an auditory display. By taking the “neuroergonomics 

approach" (Parasuraman, Christensen, & Grafton, 2012), we would use such understanding of 

the underlying cognitive characteristics of sensory substitution with respect to hemispheric 

lateralization to develop more useable and accessible devices for the end user.    

Hemispheric lateralization refers to the extent to which one side of the brain is dominant 

in processing particular information. Broadly, the right hemisphere of the human brain is 

associated with left-hand control and visual spatial perception; the left hemisphere is associated 

with right-hand control and language comprehension (Gainotti, Caltagirone, Miceli, & Masullo, 

1981; Hugdahl & Westerhausen, 2015). The human visual system is an exemplary case of such 

lateralization of sensory and perceptual function as visual field information is represented 

contralaterally (in the opposite hemisphere). In the auditory system, the split in function is less 

clear though as both hemispheres receive information from each ear with some auditory 

processes shared across hemispheres (Doreen Kimura, 1967; Zatorre, 1989). Previous research 

has found that the left hemisphere is dominant in speech processing (Alho et al., 1998; Doreen 

Kimura, 1967), potentially due to its dominant role in processing information with high temporal 

precision (Belin et al., 1998). The right hemisphere, on the other hand, is dominant in the 

processing of music (Shankweiler, 1966). However, hemispheric lateralization is not consistent 

across all language-related cognitive functions (Noffsinger, 1985), even in the same sample of 

participants (Jäncke, Steinmetz, & Volkmann, 1992). While many functions are preferentially 

processed in the left hemisphere, such as Morse code (Jäncke et al., 1992; Papcun, Krashen, 
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Terbeek, Remington, & Harshman, 1974), nonsense syllables (Doreen Kimura, 1967), and 

backward speech (D. Kimura & Folb, 1968). In contrast bilateral processing has been reported 

for non-melodic hums (Van Lancker & Fromkin, 1973), vowels (S. E. Blumstein, Tartter, 

Michel, Hirsch, & Leiter, 1977) and Turkish whistling (Güntürkün, Güntürkün, & Hahn, 2015); 

in both cases this is thought to be due to the physical properties of the acoustic inputs which rely 

upon processing in the right hemisphere. Table 1 provides a summary of some key examples of 

right hemisphere, left hemisphere and bilateral phenomena. Although there is some 

neuroimaging evidence suggesting some bilaterality in the representation of language (Van der 

Haegen, Westerhausen, Hugdahl, & Brysbaert, 2013), the evidence of a right ear advantage in 

language processing has been reported in several studies (for a review see Hugdahl & 

Westerhausen, 2015), and thus is highly reliable. Given the neuroergonimcs application in this 

article, and the behavioural measure of an ear advantage as an indication of laterality, the 

neuroimaging findings are not necessarily a concern here.  

Further, there is also research suggesting that hemispheric lateralization is not uniform in 

everyone. For example, the right hemisphere dominance of speech processing is lower in left-

handed people and in auditory disorders (Knecht et al., 2000; Pujol, Deus, Losilla, & Capdevila, 

1999; Zurif & Bryden, 1969). Furthermore, evidence suggests that hemispheric lateralization can 

change for some tasks with the acquisition of new skills or training. Franklin and colleagues 

(2008) found that 46 month-old toddlers with knowledge of colour terms demonstrated a strong 

left-hemispheric bias in a colour perception task, compared to a strong right-hemispheric bias in 

32 month-old toddlers still learning to use colour terms, suggesting that hemispheric 

lateralization changed with the acquisition of colour terms. Additionally, Bever & Chiarello 

(1974) found that hemispheric bias for recognizing simple melodies differs for musically 

experienced and musically naïve participants, with the former demonstrating a left hemisphere 

bias and the latter a right hemisphere bias. Finally, Larsen and Håkonsen (1983) found that 
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congenitally blind children do not exhibit the typical left hemisphere bias for speech, suggesting 

that hemispheric lateralization can differ between visually impaired and sighted people. 

How would visual linguistic information, such as letters, turned into sound with sensory 

substitution be processed in the brain? Even though there is extensive evidence that experienced 

users can use so-called “visual” areas, such as the visual word form area, to process images of 

words turned into sound with sensory substitution (Striem-Amit, Cohen, Dehaene, & Amedi, 

2012), clearly there is a role for auditory processing to provide the initial perceptual code. Might 

there be hemispheric laterality for visual linguistic information perceived through sensory 

substitution? The examples in Table 1 were selected to illustrate the three possibilities for 

sensory substitution: left hemisphere, right hemisphere or bilateral.  

First consider the case for left hemispheric lateralization. Bach-y-Rita and Kercel argued 

that reading braille and even reading in general may be forms of sensory substitution, suggesting 

a possible link between sensory substitution and language (Bach-y-Rita & Kercel, 2003; Deroy 

& Auvray, 2012). This might imply a similar left hemispheric lateralization bias observed in 

language processing during sensory substitution whether due to the linguistic content (Doreen 

Kimura, 1967) being presented when turning images of letters or words into something that can 

be touched or heard in sensory substitution. Visual-to-auditory sensory substitution might also 

rely on left hemispheric lateralization due to the nature of the auditory display, whereby pitch 

(perceived frequency) represents a dimension of space; the use of tones for linguistic decision 

making is also left lateralised (Zurif, 1974) and devices such as The vOICe use the same 

frequency range as human speech, and thus a similar use of tone (pitch) might require the same 

neural processing (Meijer, 1992).  

Second, consider the case for right hemispheric lateralization. There is also evidence 

suggesting that the processing of visual-to-auditory sensory substitution may be more similar to 

music processing. Haigh and colleagues (2013), for example, found a positive correlation 
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between musical training and acuity using The vOICe. This may in part be because both 

cognitive functions involve pitch processing (Peretz & Zatorre, 2005), and research suggests that 

pitch processing improves with musical expertise (Besson, Schon, Moreno, Santos, & Magne, 

2007; Schon, Magne, & Besson, 2004).  Furthermore, users of the visual-to-auditory SSD ‘Eye-

music’ (Abboud, Hanassy, Levy-Tzedek, Maidenbaum, & Amedi, 2014), which uses timbre and 

musical notes to substitute for colours in addition to the conversion algorithm of The vOICe, 

could successfully decipher information about shape and colour together. This might imply a 

similar right hemispheric lateralization might exist for sensory substitution as it does for the 

processing of melodies (Doreen Kimura, 1964) and complex pitch perception (Sidtis, 1982) as 

noted in Table 1.  

Third, consider also the case for bilateral processing of information. The processing of 

nonmelodic hums (Van Lancker & Fromkin, 1973) do not exhibit an advantage for either ear, 

and thus are bilaterally processed. Although EyeMusic provides an arguably more melodic 

version of sensory substitution than The vOICe, both are bound by the visual features in the 

image and thus might be better described as nonmelodic. Other research has found that a 

particular form of language that uses whistling in Turkey is surprisingly bilateral (Güntürkün et 

al., 2015). Even though the whistling encodes linguistic information and could arguably be 

considered melodic, the complex pitch perception involved places high demands on the right 

hemisphere with a resulting bilateral profile. This is certainly also the case with The vOICe and 

its use of pitch to encode the vertical dimension of images, so the processing of linguistic 

information might be similarly demanding of both hemispheres.  

Here we assessed hemispheric lateralization in order to study the neural mechanisms 

involved in sensory substitution. A direct approach to test for hemispheric lateralization in 

visual-to-auditory sensory substitution would shed light on to the hemispheric processing of 

SSDs and, with the neuroergonomics approach guide the development of SSDs. We assessed the 



BILATERAL SSD   10 

 

hemispheric lateralization of standard dichotic listening in both sighted and visually impaired 

participants as there are few studies of whether impaired vision impacts the lateralization of 

auditory language processing (Larsen & Hakonsen, 1983), and we assessed handedness. To 

investigate lateralization, we used the standard dichotic listening test (DLT), whereby 

participants are presented with two sounds simultaneously in each ear and asked to state which 

sounds they heard more clearly.  The DLT is a reliable method for measuring the hemispheric 

lateralization of auditory processes (Asbjørnsen et al., 2000; S. Blumstein, Goodglass, & Tartter, 

1975).      A group of visually impaired, experienced vOICe users and a group of sighted, novice 

participants completed two DLTs, both adapted from the DLT used in the Bergen fMRI group’s 

iDichotic app, which has been shown to be both quick and reliable in measuring hemispheric 

lateralization of speech processing (Bless et al., 2013). The first task was a DLT using spoken 

syllables and the second used basic stimuli produced by The vOICe (vOICe-DLT). We also 

asked participants to complete a handedness questionnaire to examine whether there is an 

association between handedness and hemispheric lateralization of visual-to-auditory sensory 

substitution as is seen with the processing of speech. 

We sought to investigate whether or not there is a difference between hemispheric 

lateralization from the processing of spoken syllables and syllables sonified from their visual 

symbols to soundscapes using The vOICe. To do this, we conducted two experiments. 

Experiment 1 investigated hemispheric lateralization in novice (non-experienced) users of The 

vOICe. To add to the reliability and robustness of these results, and the ecological validity of 

considering this in the context of visual impairment, we performed a replication and extension 

with new stimuli in Experiment 2, which assessed whether hemispheric lateralization patterns 

differ between sighted participants using The vOICe for the first time versus blind experienced 

vOICe users.   
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Experiment 1 Methods 

     Participants 

In Experiment 1, there were 12 adult sighted participants (6 females, 6 males, ages 19-

43), all of whom were non-experienced (novice) users of The vOICe. The participants were 

recruited among undergraduate and postgraduate students and staff at University of Bath and 

Bath Spa University. Each participant gave written consent before participating in the study. 

Whilst the hearing abilities of each of the participants was not explicitly checked, there was 

verbal confirmation in the participant recruitment phase that the participants were not hearing 

impaired or using a hearing aid. 

Materials 

The handedness questionnaire was 10-items (Veale, 2014) adapted from the original 20-

item Handedness Questionnaire from the Edinburgh Handedness Inventory (EHI) (Oldfield, 

1971). The EHI asks questions such as whether the participant uses their right or left hand for 

various tasks such as writing, drawing, throwing, and using a toothbrush or spoon. 

In Experiment 1 (DLT) 6 syllables were used --  /ba/, /da/, /ga/, /ka/, /pa/, /ta/ -- as 

presented in the iDichotic app (Bless et al., 2013) run on an iPad mini, with transmission via 

noise-cancelling headphones. Stimuli for vOICe-DLT was a set of 20 sound clips, each 

comprising two different vOICe soundscapes of capital letters from a selection of six. For 

Experiment 1 the strategy was to optimise the presentation of letters to aid in discrimination 

using The vOICe.  The 6 letters (with differing capitalisation as indicated) were chosen in a 

pilot-testing phase based on differentiability: E, k, O, q, R, and S.  All were rotated 90 degrees to 

the left as this resulted in more distinct soundscapes for the letters.  Each soundscape was created 

by sonifying a white image on a black background, for maximum contrast, using the vOICe 

image sonification feature set on 1 second scan speed, normal contrast. The clips were edited 

using Audacity (http://audacity.sourceforge.net/) processed as in the DLT (see the Procedure) but 
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instead using the soundscapes, such that the soundscapes were matched in the same way as the 

spoken syllables.  In Experiment 1, the vOICeDLT stimuli were presented via headphones for 

the auditory component (hearing the soundscapes), and on a sheet of printed paper for the visual 

component (viewing the letters). 

Procedure  

The DLT stimuli were presented in iDichotic using the standard procedure in the app, as 

follows.  This began with a basic learning phase that is included within the app that teaches the 

participant how to use it.  Then there was the iDichotic listening test phase, during which 

participants had to choose which syllable they heard over the headphones from a choice of the 

six syllables they read on the iPad, and responses were recorded by the app. For each clip, audio 

of two different syllables were presented, with one panned 100% to the left ear and the other 

panned 100% to the right ear, with the signal amplitude normalized. The stimuli were presented 

in a total of 36 pairs each presented once, including all 30 possible pairs of different letters,      

plus 6 homonym pairs with the same syllable presented to the left and right ears, in a pseudo-

randomized order. 

For the second phase, participants were presented with the vOICeDLT stimuli, beginning 

with a 15 minute learning phase during which the participants were instructed to learn to 

differentiate between the novel sounds to their best of their ability, by listening to the sounds, 

and then informally testing themselves on their ability to match the soundscapes to the images of 

letters on the sheet of paper.  This was followed by the vOICeDLT experiment, during which 

participants were presented a sound and pointed to the letter the sound is associated with, for 

each of the 30 pairs of different letters, presented in the same order for all participants as a single 

audio track. Syllables are used in the standard DLT as consonants are otherwise not easily 

spoken. Single letters were used with The vOICe due to the ability to present consonants without 
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vowels, the length of presentation, and to avoid increasing cognitive load by presenting 

additional information that would be unnecessary for the task. 

Laterality Index 

 Scores of hemispheric lateralization were calculated for both the DLT and vOICeDLT 

using Studdert–Kennedy and Shankweiler’s (1970) laterality index (LI). This is calculated as LI 

=  (R-L) / (R+L), whereby R is the number of stimuli directed to the right ear that were correctly 

identified, and L is the number of stimuli directed to the left ear that were correctly identified. 

Scores were therefore between -1 and 1 whereby a score of -1 suggests a strong right hemisphere 

bias, a score of 1 suggests a strong left hemisphere bias, and a score of 0 suggests no bias. 

Scores for handedness were calculated using an index adapted from Oldfield (1971) using 

10 questions as opposed to the original 20. The index is also calculated using the same formula 

(R-L) / (R+L). Preferences were scored as ‘always right’ (R=2), ‘always left’ (L=2), ‘mainly 

right’ (R=1), ‘mainly left’ (L=1), or ‘no preference’ (R=0, L=0). A score of -1 suggests strong 

left-handedness, a score of 1 suggests strong right-handedness and a score of 0 suggests 

ambidexterity. 

Results 

 Participants in Experiment 1 were found to include both left handed (n=2) and right handed 

(n=10) individuals, with mean handedness scores of -80 and 88.5 respectively.   

 The DLT and vOICeDLT results are illustrated in Figure 1. To assess laterality in each 

condition, the DLT and vOICeDLT scores were each compared to zero. The DLT score was 

significantly different than zero, The vOICeDLT was also significantly different than zero, t(11) 

= 2.3, p = .04. In a comparison between LI scores, a t-test on the DLT versus the vOICeDLT 

found a greater LI for the DLT of 0.48 (0.09) compared to the vOICeDLT of 0.14 (0.05), t (11) = 

3.44, p = .006.There were no significant correlations between handedness, vOICeDLT or DLT 

(rs ranged from .06 to .13, p > .5).  
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Experiment 2 

Methods 

Participants 

Participants comprised of two groups: novice users of The vOICe who did not participate 

in the first experiment, and “experienced” visually impaired users of The vOICe. Note that The 

vOICe has not yet gained widespread daily usage, and thus the number of experienced, visually 

impaired users is limited making a larger number of participants unavailable.  These participants 

already used the vOICe pragmatically, rather than acquiring experience through long-term 

recruitment and training as part of an experiment, thus making for an ecologically relevant 

comparison. The experienced group consisted of three male and two female participants, with 

their details provided in Table 2; a blind participant was excluded for not reporting the cause or 

duration of visual impairment (n = 5; mean age = 41 years, SD = 14.8). Participants were 

recruited from a forum used by both The vOICe users and researchers in the field. The novice 

group consisted of undergraduate students at the University of Bath (n = 15; mean age = 21.13 

years, SD = 1.41).  Each participant gave written consent before participating in the study. 

Whilst the hearing abilities of each of the participants was not explicitly checked, there was 

verbal confirmation in the participant recruitment phase that the participants were not hearing 

impaired or using a hearing aid. Indeed because of the auditory display used by The vOICe, no 

known users have hearing impairments as this would render the device difficult to use.  

Materials 

 In Experiment 2, similar stimuli to those in Experiment 1 were presented, but instead 

incorporated into a fully-integrated online format.  Participants gave consent and completed the 

handedness questionnaire as in Experiment 1, although within the online format.  The same 

iDichotic task was utilised: 6 syllables were used as in Experiment 1--  /ba/, /da/, /ga/, /ka/, /pa/, 

/ta/, but adaptations were required in order for presentation within the online form. The audio for 
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the syllables was taken from Sound of Text (http://soundoftext.com), and edited in Audacity. For 

each clip, audio files of two different syllables were opened with one panned 100% to the left ear 

and the other panned 100% to the right ear. Signal amplitude across stimuli was then normalized. 

The syllables were matched so that no combination of syllables, in terms of both the syllables 

themselves and their audio panning was used twice. That is, a pair of syllables could be used 

twice only if their panning was reversed. Each syllable was used six or seven times, and no one 

syllable was panned to one ear more than four or less than three times.  

 Stimuli for vOICeDLT was a set of 20 sound clips, each comprising two different vOICe 

soundscapes of capital letters from a selection of six— A, E, K, Q, R, S. These letters were 

chosen due to their distinct visual appearances, as in Experiment 1, but in this experiment they 

were presented for consistency with standard reading practice and applied use rather than 

discriminability. Unlike in Experiment 1, these were all capitalized and presented upright to test 

whether the results from Experiment 1 would generalise to the standard, canonical orientation of 

letters.  

 The training session consisted of two parts, both administered via online survey the first 

consisted of information on the basic rules of image-to-sound conversion and provided example 

vOICe soundscapes of basic shapes to introduce the participant to the conversion algorithm. The 

second introduced the soundscapes of the letters A, E, K, Q, R and S, and gave the participant a 

chance to try to match each soundscape with the correct visual presentation of the letter.  

Soundscapes were created using The vOICe as in Experiment 1. 

Procedure 

Experienced group 

The experienced group completed the study via an online experiment, made accessible 

through screen readers, in which the handedness questionnaire, DLT and vOICeDLT were 

presented. First, participants were provided with information regarding the nature of the study 
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before answering questions related to their visual impairment and their use of the vOICe. They 

then completed the handedness questionnaire. Next, they were asked to put on their headphones, 

and clarify they were on correctly (i.e., left headphone – left ear) before starting either DLT or 

vOICeDLT, the order of which was randomised across participants.  

For each clip, participants were presented with the list of possible syllables (DLT) or 

soundscapes (vOICeDLT), and asked to select the syllable or soundscape that they could hear. If 

they could make out both sounds, they were asked to select the sound they heard more clearly. 

After the vOICeDLT test, participants were asked to confirm whether they heard clip only once. 

Finally, the experiment ended with a debriefing that explained the purpose of the research.  

Novice group 

 The novice group also completed the study via an online experiment, but instead, in a lab 

with an experimenter present. However, to keep their experience as similar as possible to that of 

the experienced group, the experimenter was mainly silent and only answered basic questions 

before and after the experimental trials. The procedure was the same as for the experienced 

group, aside from the questions regarding visual impairment. They were instead asked to confirm 

that they were indeed naïve to The vOICe. Furthermore, between the DLT and vOICeDLT the 

novice group completed the training session introducing them to The vOICe and the soundscapes 

that would be used in vOICeDLT.   

Experiment 2 Results 

Participants in Experiment 2 were all right handed, with only three not obtaining a score 

of 1 on the handedness test, and there was no significant different between the experienced and 

novice groups (mean = .97, SD = .07 in the experienced group; mean = .97, SD = .08 in the 

novice group), t(19) = 0.09, p = .93. To test for normality, we used the Shapiro-Wilk test, as this 

is the most suitable test for small sample sizes (Yazici & Yolacan, 2007). This was found to not 

be significant for both the experienced and novice group categories and for the left, right and no 
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hemispheric bias categories, suggesting that the normality assumption had been met. Levene’s 

test was used to test for homogeneity of variances, as this is a robust test (Levene, 1960). This 

was found to not be significant too, F(5, 14) = 2.37, p = .09, suggesting that the homogeneity of 

variances assumptions was met. 

Concerning the DLT, the average dichotic listening scores for syllables were similar for 

both experienced (mean = .30, SD = .39) and novice groups (mean = .28, SD = .32), as shown in 

Figure 2. This is indicative of a left hemisphere bias. One-sample t-tests found that the mean 

DLT score was significantly different from zero in the novice group, t(14) = 3.31, p = .005 (95% 

CI [9.7,45.4]), but not in the experienced group, t(4) = 1.74, p = .16 (95% CI [-4.1,82.7]).  

Regarding vOICeDLT, novice participants had on average a greater number of correct 

responses than the experienced participants (10.3 and 7.4 respectively); an independent-samples 

t-test found this to be significant, t(16.1) = -2.55, p = .02. The laterality index results are plotted 

in Figure 3. The average scores on vOICeDLT both indicated a slight left hemisphere bias but 

this was smaller for the novice group (mean = .03, SD = .17) than for the experienced group 

(mean = .24, SD = .29), as shown in Figure 3. One-sample t-tests found that the mean 

vOICeDLT score was not significantly different to zero in either the experienced group, t(4) = 

1.84, p = .14, nor the novice group, t(14) = 0.73, p = .48, and the groups were not significantly 

different, t(19) = 1.87, p = .08. Thus these results suggest that rather than left hemisphere bias, 

there is a bilateral bias for the vOICeDLT. 

We then used a two-way repeated measures ANOVA to examine the effects of group and 

hemispheric lateralization of speech on vOICeDLT scores. The scores on the DLT were 

converted into a categorical variable defined by three categories, which were left hemisphere 

bias for scores that were greater than zero, right hemisphere bias for scores that were less than 

zero and no bias for scores that were equal to zero. Handedness scores were removed from the 
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analysis as there were no left handed or ambidextrous participants, and there were only three 

participants with handedness scores of less than 1.  

The results from the ANOVA showed that neither group, F(1, 14) = 3.29, p = .09, nor 

hemispheric lateralization of speech, F(2, 14) = 1.14, p = .35, had a significant main effect;nor 

was there a significant interaction between group and hemispheric lateralization of speech, F(2, 

14) = .85, p = .45. There were no significant correlations between handedness, vOICeDLT or 

DLT (rs ranged from .07 to .20, p > .3). 

 

Discussion 

Our study found that spoken syllables, as tested by the DLT, are processed preferentially 

in the left hemisphere, in both sighted and blind participants. However, the processing of visual 

letters converted to sound showed bilateral hemispheric processing but neither sighted nor blind 

experienced participants demonstrated a lateralization bias. Thus, the bilateral processing of 

vOICe stimuli may be due to additional recruitment of the right hemisphere in processing 

acoustic stimuli, as has been proposed for vowels and Turkish whistling (S. E. Blumstein et al., 

1977; Güntürkün et al., 2015). 

The similarities between the two groups are surprising given that they differ in both 

experience in The vOICe and in visual ability (sighted or impaired). For example, past findings 

showed that congenitally blind children did not exhibit an ear bias for speech, in contrast to 

sighted people (Larsen & Hakonsen, 1983).  Furthermore, past work has also found hemispheric 

differences between experts and novices in terms of musical experience for recognizing melodies 

(Bever & Chiarello, 1974), whereas in the present study experienced and novice groups did not 

differ when perceiving The vOICe stimuli.  It is worth noting that the experienced vOICe users 

did not report being familiar with recognizing letters specifically, and in fact perhaps had little 

use for such visual symbols in their daily lives.   
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A dichotic listening test to assess hemispheric laterality would be interesting as a pre- and 

post-test in training users with The vOICe. The limited sample size here, restricted by the small 

number of naturally occurring vOICe users available, may have not provided enough statistical 

power to detect a difference between the novice and experienced vOICe user groups in 

hemispheric lateralization. In Experiment 2, for vOICeDLT, only one out of five of The vOICe 

experienced users had a right hemisphere bias, and the other four out of five had a left 

hemisphere bias. This is compared to the sighted participants in Experiment 2, where the 

hemispheric bias for The vOICe was more widely distributed: four out of 15 had no hemispheric 

bias, six out of 15 had a right hemisphere bias, and five out 15 had a left hemisphere bias.  

Finally, no novice participants had as strong a left hemisphere bias as two of The vOICe 

experienced users. Yet these possible biases were, on average, no different from zero and thus 

have a bilateral characteristic.  

These findings suggest that, initially, letters heard with The vOICe are not processed as 

either music-like or language-like stimuli (“non-melodic hums”; (Van Lancker & Fromkin, 

1973)).  In terms of the links between visual-to-auditory sensory substitution and language 

(Bach-y-Rita & Kercel, 2003; Deroy & Auvray, 2012) and visual-to-auditory sensory 

substitution and music (Abboud et al., 2014; Haigh et al., 2013), it is possible that the lack of 

hemispheric bias in the visually impaired group suggests that the processing of visual-to-auditory 

information is equally similar to both language and music processing; it may require features of 

both language processing, such as processing information with high temporal precision (Belin et 

al., 1998) and music processing, such as pitch processing (Peretz & Zatorre, 2005) in equal 

measure. Alternatively, it is possible that processing of visual-to-auditory information is similar 

to neither language nor music processing, but this is less likely as the features mentioned above 

are possibly necessary in visual-to-auditory information processing. 
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However, there are other possible explanations. The bilaterality, or possible lack of 

hemispheric bias, found in the results could partly arise because the vOICeDLT task may have 

been too difficult. Indeed, after completing the study, some of the visually impaired participants 

expressed that they had had difficulties with vOICeDLT due to print not being widely used by 

them. This is reflected in the fact that, despite having considerably more experience with The 

vOICe, and the fact that visually impaired people perform more accurately during DLTs 

(Hugdahl et al., 2004), the experienced group was outperformed by the novice group in terms of 

correct responses during vOICeDLT. Many participant responses may therefore have been 

guesses, in which case one would expect the number of correct right and left responses to 

roughly even out, which would explain the lack of hemispheric bias seen in the analysis. Thus 

this is possibly a good indication of how new images are processed rather than how language-

related images are processed.  

Another explanation could be that the lack of significant hemispheric bias was due to the 

study’s small sample size, and that the left hemisphere bias demonstrated by the visually 

impaired participants might be representative of the greater visually impaired population, despite 

not being significant in our analysis. Note that prior results demonstrating bilateral processing 

have also been established on the basis of a non-significant hemispheric bias in a small sample 

(Güntürkün et al., 2015). Yet, if a left hemisphere bias were the case, then, the outcome of the 

study would be consistent with past research with respect to a tendency for a left hemisphere bias 

in speech processing (Alho et al., 1998; Doreen Kimura, 1967). If this were the case it might 

suggest that the processing of visual-to-auditory information is more similar to that of language 

rather than music.  

Regarding the lack of differences found in hemispheric lateralization of visual-to-

auditory processing between experienced and novice participants, it is possible that the 

hemispheric lateralization in the auditory cortex for visual-to-auditory information processing is 
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not influenced by experience or training; this might stand in contrast to prior research with the 

hemispheric lateralization for recognition of melodies (Bever & Chiarello, 1974) where expertise 

impacts hemispheric lateralization. This also contrasts with prior work on visual impairment with 

perhaps some impact on hemispheric lateralization for speech processing (Larsen & Hakonsen, 

1983). This is still compatible with previous research such as that by Pollok et al. (2005) and 

Ward and Meijer (2010) suggesting that there may be cerebral differences in visual-to-auditory 

information processing between experienced and novice users; however, it is possible that 

differences may not be present, or at least noticeable, in the auditory cortex, but instead limited 

to the visual cortex. Explanations based on the limitations stated above could also apply. For 

example, although found to be non-significant, the average score on the vOICeDLT was greater 

in the experienced group than in the novice group, suggesting a greater left hemisphere bias.  

The results from the DLT for the novice group were consistent with previous research 

that suggests there is a left hemisphere bias for speech processing, especially in right-handed 

people (Alho et al., 1998; Doreen Kimura, 1967; Knecht et al., 2000). This suggests that the DLT 

adapted from the iDichotic app (Bless et al., 2013) was an effective way to collect information 

regarding hemispheric lateralization. Further research should therefore look into replicating the 

present study but using alternative stimuli for vOICeDLT. Instead of letters, which participants 

in the present study struggled with, soundscapes of familiar shapes such as houses and cars may 

be more suitable for the visually impaired participants as these are the shapes they are more 

likely to encounter using The vOICe. This may give more accurate estimations for participants’ 

hemispheric lateralization of visual-to-auditory information. Furthermore, future studies should 

compare three or four groups instead of just two, adding a visually impaired novice group and, if 

possible, a sighted experienced group. This will help to distinguish whether differences in 

hemispheric lateralization, if any are found, are down to expertise or sightedness. 
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In terms of the questions raised by Kristjánsson and colleagues (2016) concerning 

whether using The vOICe with just one ear may be more effective than with two, the present 

study suggests, if indeed the lack of hemispheric bias in the processing of visual-to-auditory 

information is representative of the wider population, that continuing with two ears may be 

advisable. However, future research should also be conducted specifically testing the 

effectiveness of using The vOICe and other SSDs with two ears versus one, regardless of 

whether there is or is not a hemispheric bias, as it is still possible that visually impaired persons 

would benefit more from SSDs if one ear were free to attend to ambient sounds. Certainly there 

might be information processing capacity limitations with the simultaneous use of an SSD and 

monitoring of the environment (Brown & Proulx, 2016), and this would need assessment in 

future studies of the ergonomics of SSD use.  

In conclusion, our study tested the hemispheric lateralization for processing visual-to-

auditory information in visually impaired, experienced users of The vOICe and whether this 

hemispheric lateralization was different for sighted novices. We found that that there is neither a 

hemispheric bias in the processing of visual-to-auditory information in visually impaired, 

experienced users of The vOICe, nor that there is a difference in hemispheric lateralization of the 

processing of visual-to-auditory information between visually impaired, experienced vOICe 

users and sighted novices.      Although standard dichotic listening is lateralised to the left 

hemisphere, the auditory processing of images in SSDs is bilateral, possibly due to the increased 

influence of right hemisphere processing. Auditory SSDs might therefore be equally effective 

with presentation to either ear if a monaural, rather than binaural, presentation were necessary or 

preferred. Sensory substitution provides a novel approach to study issues of lateralised brain 

function given that it provides a novel auditory stimulus, unlike language, and has the potential 

for applied impact as assistive technology for the visually impaired.  
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Figures 

Figure 1. Experiment 1 data for standard Dichotic Listening Test (SDLT) and vOICe Dichotic 

Listening Test (VDLT) results. All participants in Experiment 1 were sighted, novice (non-

experienced) users of the vOICe. The values along the Y-axis indicate the laterality index (LI), 

with values above 0 indicating a right ear advantage, and values below zero indicating a left ear 

advantage, with the bar indicating the mean LI and the circles the individual values for each 

participant.  
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Figure 2. Experiment 2 data for the standard Dichotic Listening Test (DLT) results using 

iDichotic. Participants were either blind or sighted, and this is indicated on the X-axis. The 

values along the Y-axis indicate the laterality index (LI), with values above 0 indicating a right 

ear advantage, and values below zero indicating a left ear advantage, with the bar indicating the 

mean LI and the circles the individual values for each participant. 
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Figure 3. Experiment 2 data for the vOICe Dichotic Listening Test (VDLT) results using 

iDichotic. Participants were either the blind experienced users or the sighted novices, and this is 

indicated on the X-axis. The values along the Y-axis indicate the laterality index (LI), with 

values above 0 indicating a right ear advantage, and values below zero indicating a left ear 

advantage, with the bar indicating the mean LI and the circles the individual values for each 

participant. 
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Table 1.  

Hemispheric lateralization for different dichotic listening paradigms. 

    

Experimental paradigm Example Reference Hemispheric bias Ear advantage 

Words / nonsense syllables Kimura (1967) Left Right Ear 

Tones used in linguistic decisions Zurif (1974) Left Right Ear 

Melodies Kimura (1964) Right Left Ear 

Complex pitch perception Sidtis (1982) Right Left Ear 

Nonmelodic hums Van Lancker & Fromkin (1973) Bilateral No Ear Advantage 

Turkish whistling Gunturkun et al. (2015) Bilateral No Ear Advantage 

 

 



BILATERAL SSD   31 

 

     Table 2.  

Characteristics of the visually impaired users of The vOICe who participated in Experiment 2. “-

-" signifies no response 

      

Age Age of impairment Visual impairment Duration of vOICe 

use 

Frequency of 

vOICe use 

Experience in vOICe use 

(self-rated from 1-10) 

31 0 Leber congenital amaurosis 5 years Rarely 7 

73 -- -- 4 years Twice per week 3 

44 33 Traumatic Brain Injury 8 years Depends 6 

48 21 Retinitis Pigmentosa several years Not often 2 

22 0 Retinopathy of prematurity 16 years Twice per day 6 

60 21 Work accident 18 years Daily 8 

 

 


