34 research outputs found

    Organization, Function, and Therapeutic Targeting of the Morbillivirus RNA-Dependent RNA Polymerase Complex

    No full text
    The morbillivirus genus comprises major human and animal pathogens, including the highly contagious measles virus. Morbilliviruses feature single stranded negative sense RNA genomes that are wrapped by a plasma membrane-derived lipid envelope. Genomes are encapsidated by the viral nucleocapsid protein forming ribonucleoprotein complexes, and only the encapsidated RNA is transcribed and replicated by the viral RNA-dependent RNA polymerase (RdRp). In this review, we discuss recent breakthroughs towards the structural and functional understanding of the morbillivirus polymerase complex. Considering the clinical burden imposed by members of the morbillivirus genus, the development of novel antiviral therapeutics is urgently needed. The viral polymerase complex presents unique structural and enzymatic properties that can serve as attractive candidates for druggable targets. We evaluate distinct strategies for therapeutic intervention and examine how high-resolution insight into the organization of the polymerase complex may pave the path towards the structure-based design and optimization of next-generation RdRp inhibitors

    Structural and functional characterization of the RNA-Dependant RNA-Polymerase of respiratory syncytial virus

    No full text
    Le virus respiratoire syncytial (VRS) est le principal agent responsable desbronchopneumonies du jeune veau et des bronchiolites du nourrisson. Il n’existe pas devaccin ni d’antiviraux spécifiques pour l’homme. La réplication du génome et la transcriptiondes gènes viraux sont assurées par un ensemble de protéines virales constituant le complexeARN polymérase ARN-dépendant : la nucléoprotéine N, la phosphoprotéine P, le facteur detranscription M2-1 et la grosse sous-unité L. L’objectif principal de ma thèse était d’obtenirde nouvelles données structurales et fonctionnelles sur le complexe ARN-polymérase ARNdépendante(RdRp) du VRS, en particulier sur le couple P-L. Pour ceci j’ai tout d’aborddéveloppé un protocole de production et purification de la protéine L sous formerecombinante en cellules d’insecte. Ceci m’a permis ensuite de cartographier le sited’interaction de P avec L. J’ai ainsi mis en évidence que la protéine L interagit avec la partieC-terminale de la protéine P, au-niveau des résidus 216 à 239. Les données obtenuessuggèrent que ce domaine peut former un nouvel élément de reconnaissance moléculaire(« MoRE ») se structurant en hélice alpha lors de l’interaction avec la protéine L. De plus, lacartographie de ce domaine d’interaction m’a permis d’identifier entre les résidus 164 et 205de P une nouvelle région impliquée dans le recrutement de la protéine L aux corpsd’inclusions viraux. Ces nouvelles données ouvrent la voie à de nouvelles études structuralesde l’ARN-polymérase du VRS et nous permettent d’envisager de nouvelles stratégiesantivirales ciblant ce complexe.Respiratory syncytial virus (RSV) is the leading cause of calves bronchopneumonia andinfants bronchiolitis. Neither vaccine nor antiviral treatments are currently available for use inhumans. Viral genome is replicated and transcribed by a set of viral proteins constituting theviral RNA-dependent RNA polymerase (RdRp) complex: the nucleoprotein (N), thephosphoprotein (P), the transcription factor (M2-1) and the large subunit (L). This workaimed to unveil new structural and functional data regarding the viral RdRp, especially the PLcouple. With this aim in view, I have first conceived a protocol to produce and purifyrecombinant L and P proteins expressed in insect cells. This tool enabled the fine mappingand characterization of the L binding domain of the RSV phosphoprotein. This highlightedthe interaction between the L protein and the C-terminal region of the P protein, especiallyresidues 216 to 239. Further data suggests that this area constitutes an alpha helix formingmolecular recognition element (« MoRE ») during P-L interaction. Furthermore, this studyunveiled a new region of the P protein encompassing residues 164 to 205, involved in therecruitment of L protein to viral inclusion bodies. These new results open the way toupcoming structural studies of RSV RdRp and allow us to define a new target for thedevelopment of antiviral drugs against RSV

    Organization, Function, and Therapeutic Targeting of the Morbillivirus RNA-Dependent RNA Polymerase Complex

    No full text
    The morbillivirus genus comprises major human and animal pathogens, including the highly contagious measles virus. Morbilliviruses feature single stranded negative sense RNA genomes that are wrapped by a plasma membrane-derived lipid envelope. Genomes are encapsidated by the viral nucleocapsid protein forming ribonucleoprotein complexes, and only the encapsidated RNA is transcribed and replicated by the viral RNA-dependent RNA polymerase (RdRp). In this review, we discuss recent breakthroughs towards the structural and functional understanding of the morbillivirus polymerase complex. Considering the clinical burden imposed by members of the morbillivirus genus, the development of novel antiviral therapeutics is urgently needed. The viral polymerase complex presents unique structural and enzymatic properties that can serve as attractive candidates for druggable targets. We evaluate distinct strategies for therapeutic intervention and examine how high-resolution insight into the organization of the polymerase complex may pave the path towards the structure-based design and optimization of next-generation RdRp inhibitors

    Fine mapping and characterization of the L-polymerase-binding domain of the respiratory syncytial virus phosphoprotein

    No full text
    International audienceThe minimum requirement for an active RNA-dependent RNA polymerase of respiratory syncytial virus (RSV) is a complex made of two viral proteins, the polymerase large protein (L) and the phosphoprotein (P). Here we have investigated the domain on P that is responsible for this critical P-L interaction. By use of recombinant proteins and serial deletions, an L binding site was mapped in the C-terminal region of P, just upstream of the N-RNA binding site. The role of this molecular recognition element of about 30 amino acid residues in the L-P interaction and RNA polymerase activity was evaluated in cellula using an RSV mini-genome system and site-directed mutagenesis. The results highlighted the critical role of hydrophobic residues located in this region. IMPORTANCE Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract illness in infants. Since no vaccine and no good antivirals against RSV are available, it is essential to better understand how the viral machinery functions in order to develop new antiviral strategies. Like all negative-strand RNA viruses, RSV codes for its own machinery to replicate and transcribe its genome. The core of this machinery is composed of two proteins, the phosphoprotein (P) and the large protein (L). Here, using recombinant proteins, we have mapped and characterized the P domain responsible for this L-P interaction and the formation of an active L-P complex. These findings extend our understanding of the mechanism of action of RSV RNA polymerase and allow us to define a new target for the development of drugs against RSV

    Identification and characterization of the binding site of the respiratory syncytial virus phosphoprotein to RNA-free nucleoprotein

    No full text
    International audienceThe RNA genome of respiratory syncytial virus (RSV) is constitutively encapsidated by the viral nucleoprotein N, thus forming a helical nucleocapsid. Polymerization of N along the genomic and antigenomic RNAs is concomitant to replication and requires the preservation of an unassembled monomeric nucleoprotein pool. To this end, and by analogy with Paramyxoviridae and Rhabdoviridae, it is expected that the viral phosphoprotein P acts as a chaperone protein, forming a soluble complex with the RNA-free form of N (N-0-P complex). Here, we have engineered a mutant form of N that is monomeric, is unable to bind RNA, still interacts with P, and could thus mimic the N-0 monomer. We used this N mutant, designated N-mono, as a substitute for N-0 in order to characterize the P regions involved in the N-0-P complex formation. Using a series of P fragments, we determined by glutathione S-transferase (GST) pulldown assays that the N and C termini of P are able to interact with N-mono. We analyzed the functional role of amino-terminal residues of P by site-directed mutagenesis, using an RSV polymerase activity assay based on a human RSV minireplicon, and found that several residues were critical for viral RNA synthesis. Using GST pulldown and surface plasmon resonance assays, we showed that these critical residues are involved in the interaction between P[1-40] peptide and N-mono in vitro. Finally, we showed that overexpression of the peptide P[1-29] can inhibit the polymerase activity in the context of the RSV minireplicon, thus demonstrating that targeting the N-0-P interaction could constitute a potential antiviral strategy. IMPORTANCE Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract illness in infants. Since no vaccine or efficient antiviral treatment is available against RSV, it is essential to better understand how the viral machinery functions in order to develop new antiviral strategies. RSV phosphoprotein P, the main RNA polymerase cofactor, is believed to function as a chaperon protein, maintaining N as a nonassembled, RNA-free protein (N-0) competent for RNA encapsidation. In this paper, we provide the first evidence, to our knowledge, that the N terminus of P contains a domain that binds specifically to this RNA-free form of N. We further show that overexpression of a small peptide spanning this region of P can inhibit viral RNA synthesis. These findings extend our understanding of the function of RSV RNA polymerase and point to a new target for the development of drugs against this virus

    Visualizing the replication of respiratory syncytial virus in cells and in living mice

    No full text
    International audienceRespiratory syncytial virus (RSV) is the most important cause of severe lower-respiratory tract disease in calves and young children, yet no human vaccine nor efficient curative treatments are available. Here we describe a recombinant human RSV reverse genetics system in which the red fluorescent protein (mCherry) or the firefly luciferase (Luc) genes are inserted into the RSV genome. Expression of mCherry and Luc are correlated with infection rate, allowing the monitoring of RSV multiplication in cell culture. Replication of the Luc-encoding virus in living mice can be visualized by bioluminescent imaging, bioluminescence being detected in the snout and lungs of infected mice after nasal inoculation. We propose that these recombinant viruses are convenient and valuable tools for screening of compounds active against RSV, and can be used as an extremely sensitive readout for studying effects of antiviral therapeutics in living mice

    Structure of the Respiratory Syncytial Virus Polymerase Complex

    No full text
    International audienceGraphical Abstract Highlights d Cryo-EM structure of RSV L bound by tetrameric RSV P solved to 3.2 Ă… d P tetramer adopts an asymmetric tentacular arrangement when bound to L d L priming loop adopts elongation-compatible state without PRNTase-RdRp separation d Structure rationalizes escape from small-molecule antivirals In Brief Respiratory syncytial virus (RSV) remains a leading cause of bronchiolitis and hospitalization, especially of infants. Gilman et al. present a 3.2-Ă… cryo-EM structure of the RSV L polymerase in complex with the P phosphoprotein-components of the core viral replication machinery that represent an attractive target for the development of therapeutic agents. Data Resources 6PZ
    corecore