33 research outputs found
Serotype Profile of Nasopharyngeal Isolates of Streptococcus pneumoniae Obtained from Children in Burkina Faso before and after Mass Administration of Azithromycin.
Mass drug administration (MDA) with azithromycin (AZ) has been used successfully to control trachoma. However, several studies have shown that MDA with AZ has led to the emergence of resistance to AZ in Streptococcus pneumoniae. The emergence of resistance to AZ has also been observed when this antibiotic was combined with the antimalarials used for seasonal malaria chemoprevention (SMC). The development of antibiotic resistance, including resistance to AZ, is sometimes associated with the emergence of a bacterial clone that belongs to a specific serotype. We hypothesize that the increase in resistance of S. pneumoniae observed after 3 years of SMC with AZ might be associated with a change in the distribution of pneumococcal serotypes. Therefore, 698 randomly selected isolates from among the 1,468 isolates of S. pneumoniae obtained during carriage studies undertaken during an SMC plus AZ trial were serotyped. A polymerase chain reaction (PCR) multiplex assay using an algorithm adapted to the detection of the pneumococcal serotypes most prevalent in African countries was used for initial serotyping, and the Quellung technique was used to complement the PCR technique when necessary. Fifty-six serotypes were detected among the 698 isolates of S. pneumoniae. A swift appearance and disappearance of many serotypes was observed, but some serotypes including 6A, 19F, 19A, 23F, and 35B were persistent. The distribution of serotypes between isolates obtained from children who had received AZ or placebo was similar. An increase in AZ resistance was seen in several serotypes following exposure to AZ. Mass drug administration with AZ led to the emergence of resistance in pneumococci of several different serotypes and did not appear to be linked to the emergence of a single serotype
Impact of mass administration of azithromycin as a preventive treatment on the prevalence and resistance of nasopharyngeal carriage of Staphylococcus aureus
Staphylococcus aureus is a major cause of serious illness and death in children, indicating the need to monitor prevalent strains, particularly in the vulnerable pediatric population. Nasal carriage of S. aureus is important as carriers have an increased risk of serious illness due to systemic invasion by this pathogen and can transmit the infection. Recent studies have demonstrated the effectiveness of azithromycin in reducing the prevalence of nasopharyngeal carrying of pneumococci, which are often implicated in respiratory infections in children. However, very few studies of the impact of azithromycin on staphylococci have been undertaken. During a clinical trial under taken in 2016, nasal swabs were collected from 778 children aged 3 to 59 months including 385 children who were swabbed before administration of azithromycin or placebo and 393 after administration of azithromycin or placebo. Azithromycin was given in a dose of 100 mg for three days, together with the antimalarials sulfadoxine-pyrimethamine and amodiaquine, on four occasions at monthly intervals during the malaria transmission season. These samples were cultured for S. aureus as well as for the pneumococcus. The S. aureus isolates were tested for their susceptibility to azithromycin (15 g), penicillin (10 IU), and cefoxitine (30 g) (Oxoid Ltd). S. aureus was isolated from 13.77% (53/385) swabs before administration of azithromycin and from 20.10% (79/393) six months after administration (PR = 1.46 [1.06; 2.01], p = 0.020). Azithromycin resistance found in isolates of S. aureus did not differ significantly before and after intervention (26.42% [14/53] vs 16.46% [13/79], (PR = 0.62 [0.32; 1.23], p = 0.172). Penicillin resistance was very pronounced, 88.68% and 96.20% in pre-intervention and in post-intervention isolates respectively, but very little Methicillin Resistance (MRSA) was detected (2 cases before and 2 cases after intervention). Monitoring antibiotic resistance in S. aureus and other bacteria is especially important in Burkina Faso due to unregulated consumption of antibiotics putting children and others at risk
Multicountry study of SARS-CoV-2 and associated risk factors among healthcare workers in Côte d'Ivoire, Burkina Faso and South Africa
Background
Reports on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread across Africa have varied, including among healthcare workers (HCWs). This study assessed the comparative SARS-CoV-2 burden and associated risk factors among HCWs in three African countries.
Methods
A multicentre study was conducted at regional healthcare facilities in Côte d’Ivoire (CIV), Burkina Faso (BF) and South Africa (SA) from February to May 2021. HCWs provided blood samples for SARS-CoV-2 serology and nasopharyngeal/oropharyngeal swabs for testing of acute infection by polymerase chain reaction and completed a questionnaire. Factors associated with seropositivity were assessed with logistic regression.
Results
Among 719 HCWs, SARS-CoV-2 seroprevalence was 34.6% (95% confidence interval 31.2 to 38.2), ranging from 19.2% in CIV to 45.7% in BF. A total of 20 of 523 (3.8%) were positive for acute SARS-CoV-2 infection. Female HCWs had higher odds of SARS-CoV-2 seropositivity compared with males, and nursing staff, allied health professionals, non-caregiver personnel and administration had higher odds compared with physicians. HCWs also reported infection prevention and control (IPC) gaps, including 38.7% and 29% having access to respirators and IPC training, respectively, in the last year.
Conclusions
This study was a unique comparative HCW SARS-CoV-2 investigation in Africa. Seroprevalence estimates varied, highlighting distinctive population/facility-level factors affecting COVID-19 burden and the importance of established IPC programmes to protect HCWs and patients.Peer Reviewe
The African Network for Improved Diagnostics, Epidemiology and Management of common infectious Agents
In sub-Saharan Africa, acute respiratory infections (ARI), acute gastrointestinal infections (GI) and acute febrile disease of unknown cause (AFDUC) have a large disease burden, especially among children, while respective aetiologies often remain unresolved. The need for robust infectious disease surveillance to detect emerging pathogens along with common human pathogens has been highlighted by the ongoing novel coronavirus disease2019 (COVID-19) pandemic. The African Network for Improved Diagnostics, Epidemiology and Management of Common Infectious Agents (ANDEMIA) is a sentinel surveillance study on the aetiology and clinical characteristics of ARI, GI and AFDUC in sub-Saharan Africa.Peer Reviewe
Nationwide Trends in Bacterial Meningitis before the Introduction of 13-Valent Pneumococcal Conjugate Vaccine-Burkina Faso, 2011-2013.
BACKGROUND: Following introduction of Haemophilus influenzae type b vaccine in 2006 and serogroup A meningococcal conjugate vaccine in 2010, Streptococcus pneumoniae (Sp) became the leading cause of bacterial meningitis in Burkina Faso. We describe bacterial meningitis epidemiology, focusing on pneumococcal meningitis, before 13-valent pneumococcal conjugate vaccine (PCV13) introduction in the pediatric routine immunization program in October 2013. METHODS: Nationwide population-based meningitis surveillance collects case-level demographic and clinical information and cerebrospinal fluid (CSF) laboratory results. Sp infections are confirmed by culture, real-time polymerase chain reaction (rt-PCR), or latex agglutination, and CSF serotyped using real-time and conventional PCR. We calculated incidence rates in cases per 100,000 persons, adjusting for age and proportion of cases with CSF tested at national reference laboratories, and case fatality ratios (CFR). RESULTS: During 2011-2013, 1,528 pneumococcal meningitis cases were reported. Average annual adjusted incidence rates were 26.9 (<1 year), 5.4 (1-4 years), 7.2 (5-14 years), and 3.0 (≥15 years). Overall CFR was 23% and highest among children aged <1 year (32%) and adults ≥30 years (30%). Of 1,528 cases, 1,036 (68%) were serotyped: 71% were PCV13-associated serotypes, 14% were non-PCV13-associated serotypes, and 15% were non-typeable by PCR. Serotypes 1 (45%) and 12F/12A/12B/44/46 (8%) were most common. Among children aged <1 year, serotypes 5 (15%), 6A/6B (13%) and 1 (12%) predominated. CONCLUSIONS: In Burkina Faso, the highest morbidity and mortality due to pneumococcal meningitis occurred among children aged <1 year. The majority of cases were due to PCV13-associated serotypes; introduction of PCV13 should substantially decrease this burden
Impact of the addition of azithromycin to antimalarials used for seasonal malaria chemoprevention on antimicrobial resistance of Streptococcus pneumoniae.
OBJECTIVE: A trial was conducted in Burkina Faso and Mali to investigate whether addition of azithromycin to the antimalarials used for seasonal malaria chemoprevention reduces mortality and hospital admissions of children. We tested the sensitivity of nasal isolates of Streptococcus pneumoniae obtained during this trial to azithromycin and other antibiotics. METHODS: Azithromycin or placebo was administered monthly, in combination with the antimalarials used for seasonal malaria chemoprevention, for four months, over the annual malaria transmission seasons of 2014, 2015, and 2016. Nasopharyngeal swabs were collected from 2773 Burkinabe and 2709 Malian children on seven occasions: in July and December each year prior to and after drug administration, and at a final survey in early 2018. Pneumococci were isolated from nasopharyngeal swabs and tested for sensitivity to azithromycin and other antibiotics. RESULTS: A total of 5482 samples were collected. In Burkina Faso, the percentage of pneumococcal isolates resistant to azithromycin among children who had received it increased from 4.9% (95% CI: 2.4%, 9.9%) before the intervention to 25.6% (95% CI: 17.6%, 35.7%) afterward. In Mali, the increase was from 7.6% (95% CI: 3.8%, 14.4%) to 68.5% (95% CI: 55.1%, 79.4%). The percentage of resistant isolates remained elevated (17.7% (95% CI: 11.1%, 27.1%) in Burkina Faso and 19.1% (95% CI: 13.5%, 26.3%) in Mali) among children who had received azithromycin 1 year after stopping the intervention. An increase in resistance to azithromycin was also observed in children who had received a placebo but it was less marked. CONCLUSION: Addition of azithromycin to the antimalarial combination used for seasonal malaria chemoprevention was associated with an increase in resistance of pneumococci to azithromycin and erythromycin, which persisted 1 year after the last administration of azithromycin
Multicountry study of SARS-CoV-2 and associated risk factors among healthcare workers in Cote d’Ivoire, Burkina Faso and South Africa
DATA AVAILABILITY : The data sets generated for this study are available upon request from the corresponding author.BACKGROUND : Reports on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread across Africa have varied, including among healthcare workers (HCWs). This study assessed the comparative SARS-CoV-2 burden and associated risk factors among HCWs in three African countries. METHODS : A multicentre study was conducted at regional healthcare facilities in Côte d’Ivoire (CIV), Burkina Faso (BF) and South Africa (SA) from February to May 2021. HCWs provided blood samples for SARS-CoV-2 serology and nasopharyngeal/oropharyngeal swabs for testing of acute infection by polymerase chain reaction and com- pleted a questionnaire. Factors associated with seropositivity were assessed with logistic regression. RESULTS : Among 719 HCWs, SARS-CoV-2 seroprevalence was 34.6% (95% confidence interval 31.2 to 38.2), rang- ing from 19.2% in CIV to 45.7% in BF. A total of 20 of 523 (3.8%) were positive for acute SARS-CoV-2 infection. Female HCWs had higher odds of SARS-CoV-2 seropositivity compared with males, and nursing staff, allied health professionals, non-caregiver personnel and administration had higher odds compared with physicians. HCWs also reported infection prevention and control (IPC) gaps, including 38.7% and 29% having access to respirators and IPC training, respectively, in the last year. CONCLUSIONS : This study was a unique comparative HCW SARS-CoV-2 investigation in Africa. Seroprevalence estimates varied, highlighting distinctive population/facility-level factors affecting COVID-19 burden and the importance of established IPC programmes to protect HCWs and patients.The German Federal Ministry of Education and Research Programme for Research Networks for Health Innovations in Sub-Saharan Africa (ANDEMIA), the German Federal Ministry of Health Global Health Protection Programme (ARGOS project) and the National Robert Koch Institute in Germany.https://academic.oup.com/trstmham2023Medical MicrobiologyMedical VirologySDG-03:Good heatlh and well-bein
A year of genomic surveillance reveals how the SARS-CoV-2 pandemic unfolded in Africa.
The progression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in Africa has so far been heterogeneous, and the full impact is not yet well understood. In this study, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories. We show that the epidemics in most countries were initiated by importations predominantly from Europe, which diminished after the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1, and C.1.1. Although distorted by low sampling numbers and blind spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a source for new variants
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.
Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance
INTRODUCTION
Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic.
RATIONALE
We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs).
RESULTS
Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants.
CONCLUSION
Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century