100 research outputs found

    Spatial and Long-Term Temporal Changes in Water Quality Dynamics of the Tonle Sap Ecosystem

    Get PDF
    Tonle Sap lake-river floodplain ecosystem (TSE) is one of the world’s most productive freshwater systems. Changes in hydrology, climate, population density, and land use influence water quality in this system. We investigated long term water quality dynamics (22 years) in space and time and identified potential changes in nutrient limitation based on nutrient ratios of inorganic nitrogen and phosphorus. Water quality was assessed at five sites highlighting the dynamics in wet and dry seasons. Predictors of water quality included watershed land use, climate, population, and water level. Most water quality parameters varied across TSE, except pH and nitrate that remained constant at all sites. In the last decade, there is a change in the chemical nutrient ratio suggesting that nitrogen may be the primary limiting nutrient across the system. Water quality was strongly affected by development in the watershed i.e., flooded forest loss, climatic variation, population growth, and change in water level. Seasonal variations of water quality constituents were driven by precipitation and hydrology, notably the Mekong’s distinct seasonal flood pulse

    Observation of a nuclear recoil peak at the 100 eV scale induced by neutron capture

    Full text link
    Coherent elastic neutrino-nucleus scattering and low-mass Dark Matter detectors rely crucially on the understanding of their response to nuclear recoils. We report the first observation of a nuclear recoil peak at around 112 eV induced by neutron capture. The measurement was performed with a CaWO4_4 cryogenic detector from the NUCLEUS experiment exposed to a 252^{252}Cf source placed in a compact moderator. The measured spectrum is found in agreement with simulations and the expected peak structure from the single-γ\gamma de-excitation of 183^{183}W is identified with 3 σ\sigma significance. This result demonstrates a new method for precise, in-situ, and non-intrusive calibration of low-threshold experiments

    Coherent elastic neutrino-nucleus scattering: Terrestrial and astrophysical applications

    Get PDF
    Coherent elastic neutrino-nucleus scattering (CEν\nuNS) is a process in which neutrinos scatter on a nucleus which acts as a single particle. Though the total cross section is large by neutrino standards, CEν\nuNS has long proven difficult to detect, since the deposited energy into the nucleus is ∼\sim keV. In 2017, the COHERENT collaboration announced the detection of CEν\nuNS using a stopped-pion source with CsI detectors, followed up the detection of CEν\nuNS using an Ar target. The detection of CEν\nuNS has spawned a flurry of activities in high-energy physics, inspiring new constraints on beyond the Standard Model (BSM) physics, and new experimental methods. The CEν\nuNS process has important implications for not only high-energy physics, but also astrophysics, nuclear physics, and beyond. This whitepaper discusses the scientific importance of CEν\nuNS, highlighting how present experiments such as COHERENT are informing theory, and also how future experiments will provide a wealth of information across the aforementioned fields of physics

    Coherent elastic neutrino-nucleus scattering: Terrestrial and astrophysical applications

    Get PDF
    Coherent elastic neutrino-nucleus scattering (CEν\nuNS) is a process inwhich neutrinos scatter on a nucleus which acts as a single particle. Thoughthe total cross section is large by neutrino standards, CEν\nuNS has longproven difficult to detect, since the deposited energy into the nucleus is∼\sim keV. In 2017, the COHERENT collaboration announced the detection ofCEν\nuNS using a stopped-pion source with CsI detectors, followed up thedetection of CEν\nuNS using an Ar target. The detection of CEν\nuNS hasspawned a flurry of activities in high-energy physics, inspiring newconstraints on beyond the Standard Model (BSM) physics, and new experimentalmethods. The CEν\nuNS process has important implications for not onlyhigh-energy physics, but also astrophysics, nuclear physics, and beyond. Thiswhitepaper discusses the scientific importance of CEν\nuNS, highlighting howpresent experiments such as COHERENT are informing theory, and also how futureexperiments will provide a wealth of information across the aforementionedfields of physics.<br

    Pregnancy and neonatal outcomes of COVID-19: The PAN-COVID study

    Get PDF
    Objective To assess perinatal outcomes for pregnancies affected by suspected or confirmed SARS-CoV-2 infection. Methods Prospective, web-based registry. Pregnant women were invited to participate if they had suspected or confirmed SARS-CoV-2 infection between 1st January 2020 and 31st March 2021 to assess the impact of infection on maternal and perinatal outcomes including miscarriage, stillbirth, fetal growth restriction, pre-term birth and transmission to the infant. Results Between April 2020 and March 2021, the study recruited 8239 participants who had suspected or confirmed SARs-CoV-2 infection episodes in pregnancy between January 2020 and March 2021. Maternal death affected 14/8197 (0.2%) participants, 176/8187 (2.2%) of participants required ventilatory support. Pre-eclampsia affected 389/8189 (4.8%) participants, eclampsia was reported in 40/ 8024 (0.5%) of all participants. Stillbirth affected 35/8187 (0.4 %) participants. In participants delivering within 2 weeks of delivery 21/2686 (0.8 %) were affected by stillbirth compared with 8/4596 (0.2 %) delivering ≥ 2 weeks after infection (95 % CI 0.3–1.0). SGA affected 744/7696 (9.3 %) of livebirths, FGR affected 360/8175 (4.4 %) of all pregnancies. Pre-term birth occurred in 922/8066 (11.5%), the majority of these were indicated pre-term births, 220/7987 (2.8%) participants experienced spontaneous pre-term births. Early neonatal deaths affected 11/8050 livebirths. Of all neonates, 80/7993 (1.0%) tested positive for SARS-CoV-2. Conclusions Infection was associated with indicated pre-term birth, most commonly for fetal compromise. The overall proportions of women affected by SGA and FGR were not higher than expected, however there was the proportion affected by stillbirth in participants delivering within 2 weeks of infection was significantly higher than those delivering ≥ 2 weeks after infection. We suggest that clinicians’ threshold for delivery should be low if there are concerns with fetal movements or fetal heart rate monitoring in the time around infection

    W/W−SiCH/TaOxNy Multinanolayers for Concentrated Solar Power

    No full text
    International audienceAbsorbers for concentrating solar power plants require materials that are resistant to high temperatures and spectrally selective, i.e., highly absorbent in the visible and near infrared range and low-emissive in the infrared range. To improve the absorbing power of the receivers in concentrating solar power plants, an optical end coating based on tantalum oxynitride can be deposited on an absorbing bilayer based on metal and ceramic materials. Antireflective Ta O x N y coating can maximize the transmission of solar radiation to the W/W-SiCH bilayer absorber material which has been previously studied and ensure a good thermomechanical resistance of the whole coating. For this study, Ta O x N y are deposited by reactive sputtering technique. Their chemical composition is investigated by Ion Beam Analysis which shows compositions ranging from tantalum oxide to tantalum nitride depending of the gas flow rate. Optical properties are determined by ellipsometry and UV-Visible spectroscopy. The microstructure determined by the Pair Distribution Function (PDF) reveals a mixture of TaN, TaON and Ta 2 O 5 phases
    • …
    corecore