Coherent elastic neutrino-nucleus scattering: Terrestrial and astrophysical applications

Abstract

Coherent elastic neutrino-nucleus scattering (CEν\nuNS) is a process inwhich neutrinos scatter on a nucleus which acts as a single particle. Thoughthe total cross section is large by neutrino standards, CEν\nuNS has longproven difficult to detect, since the deposited energy into the nucleus is\sim keV. In 2017, the COHERENT collaboration announced the detection ofCEν\nuNS using a stopped-pion source with CsI detectors, followed up thedetection of CEν\nuNS using an Ar target. The detection of CEν\nuNS hasspawned a flurry of activities in high-energy physics, inspiring newconstraints on beyond the Standard Model (BSM) physics, and new experimentalmethods. The CEν\nuNS process has important implications for not onlyhigh-energy physics, but also astrophysics, nuclear physics, and beyond. Thiswhitepaper discusses the scientific importance of CEν\nuNS, highlighting howpresent experiments such as COHERENT are informing theory, and also how futureexperiments will provide a wealth of information across the aforementionedfields of physics.<br

    Similar works