20 research outputs found

    Mixing and scalar dissipation rate statistics in a starting gas jet

    Get PDF
    We quantify the temporal development of the mixing field of a starting jet by measuring the mixture fraction and the scalar dissipation rate and their statistics in an isothermal, impulsively started, gaseous jet. The scalar measurements are performed using planar laser induced fluorescence and, with appropriate processing of the resulting images, allow scalar dissipation rate measurements within 20%. The probability density functions of the mixture fraction, measured within a region of the order of 3 times the Batchelor length scale of the flow, are bimodal and skewed around a well-mixed radial location, which depends on the downstream distance and the time after the start of injection. The instantaneous distributions of the scalar dissipation rate reveal regions of high mixing at the jet periphery and at the developing vortex ring. The normalised probability density function (pdf) of the scalar dissipation rate at various flow positions and times after the start of injection has the same characteristic shape but differs from the usually suggested lognormal distribution at both low and high dissipation values; the same, also, holds true for the pdf conditioned on different values of the mixture fraction. The mean of the scalar dissipation rate conditional on mixture fraction shows a variation across the mixture fraction range, which differs between flow locations and times after the start of injection; however, at later times and for larger downstream distances the conditional mean between flow locations has similar distributions. Implications of the measurements for the auto-ignition of gaseous jets are examined and demonstrate that near the nozzle exit or at earlier times conditions are un-favourable for auto-ignition

    Rayleigh scattering temperature measurements in a swirl stabilized burner

    Get PDF
    Rayleigh scattering temperature measurements were obtained in a turbulent reactive swirling coaxial jet discharged from a swirl-stabilized burner along the jet-flame centerline. They are reported up to 10 fuel nozzle diameters downstream of the burner exit at a Reynolds number of 29000. The effect of swirl numbers (S=0.3, 0.58, 1.07) on the temperature fields, the power spectral density of temperature fluctuations and on the probability density functions of the temperature fluctuations was determined

    Experimental Assessment of ‘subgrid’ scale Probability Density Function Models for Large Eddy Simulation

    Get PDF
    Filtered density functions (FDFs) of mixture fraction are quantified by analyzing experimental data obtained from two-dimensional planar laser-induced fluorescence scalar measurements in the isothermal swirling flow of a combustor operating at a Reynolds number of 28,662 for three different swirl numbers (0.3, 0.58 and 1.07). Two-dimensional filtering using a box filter was performed on the measured scalar to obtain the filtered variables used for presumed FDF for Large Eddy Simulations (LES). A dependant variable from the measured scalar, which was a pre-computed temperature, was integrated over the experimentally obtained FDF as well as over the presumed beta or top-hat FDFs and a relative error in temperature prediction was calculated. The experimentally measured FDFs depended on swirl numbers and axial and radial positions in the flow. The FDFs were unimodal in the regions of low variance and bimodal in the regions of high variance. The influence of the filter spatial dimension on the measured FDF was evaluated and consequences for subgrid modeling for LES discussed

    Experimental assessment of presumed filtered density function models

    Get PDF
    Measured filtered density functions (FDFs) as well as assumed beta distribution model of mixture fraction and “subgrid” scale (SGS) scalar variance, used typically in large eddy simulations, were studied by analysing experimental data, obtained from two-dimensional planar, laser induced fluorescence measurements in isothermal swirling turbulent flows at a constant Reynolds number of 29 000 for different swirl numbers (0.3, 0.58, and 1.07)

    Scalar dissipation rate statistics in turbulent swirling jets

    Get PDF
    The scalar dissipation rate statistics were measured in an isothermal flow formed by discharging a central jet in an annular stream of swirling air flow. This is a typical geometry used in swirl-stabilised burners, where the central jet is the fuel. The flow Reynolds number was 29 000, based on the area-averaged velocity of 8.46 m/s at the exit and the diameter of 50.8 mm. The scalar dissipation rate and its statistics were computed from two-dimensional imaging of the mixture fraction fields obtained with planar laser induced fluorescence of acetone. Three swirl numbers, S, of 0.3, 0.58, and 1.07 of the annular swirling stream were considered. The influence of the swirl number on scalar mixing, unconditional, and conditional scalar dissipation rate statistics were quantified. A procedure, based on a Wiener filter approach, was used to de-noise the raw mixture fraction images. The filtering errors on the scalar dissipation rate measurements were up to 15%, depending on downstream positions from the burner exit. The maximum of instantaneous scalar dissipation rate was found to be up to 35 s−1, while the mean dissipation rate was 10 times smaller. The probability density functions of the logarithm of the scalar dissipation rate fluctuations were found to be slightly negatively skewed at low swirl numbers and almost symmetrical when the swirl number increased. The assumption of statistical independence between the scalar and its dissipation rate was valid for higher swirl numbers at locations with low scalar fluctuations and less valid for low swirl numbers. The deviations from the assumption of statistical independence were quantified. The conditional mean of the scalar dissipation rate, the standard deviation of the scalar dissipation rate fluctuations, the weighted probability of occurrence of the mean conditional scalar dissipation rate, and the conditional probability are reported

    Towards identifying flame patterns in multiple, late injection schemes on a single cylinder optical diesel engine

    Get PDF
    The work investigates the effect of various post-injection strategies on the flame patterns in a Ricardo Hydra optical single cylinder light duty diesel engine, operated in a partially premixed combustion mode (PPC), under low load (IMEP: ca. 2.3 bar) low speed (1200 rpm) conditions. The effect of postinjection fuel amount (12 and 24% of the total fuel quantity per cycle) and post-injection timing (0, 5, 10 deg aTDC) are investigated via pressure trace analysis and optical measurements. Flame propagation is captured by means of high speed flame natural luminosity imaging and of CH* , C2 * and OH* line-of-sight chemiluminescence measurements. Results indicate that post-injections suppress mixture reactivity but enhances oxidation, and that a larger amount of fuel and/or later post injection, leads to higher levels of natural luminosity, indicating possible higher soot-out emissions, while post injection close to the main combustion event appears to have a beneficial effect on the soot oxidation processes

    A comparative study on the effect of simulated EGR environment on spray characteristics under engine-like conditions

    Get PDF
    Abstract Increasing concern over air quality and security of energy supply poses challenges to engine research and manufacturing. Despite improvements in conventional engine design, many alternatives are winning their place in order to further reduce engine-out emissions. Sophisticated operating modes, such as homogeneous charge compression ignition (HCCI) and Partially premixed Charge Compression Ignition (PCCI), often coupled with exhaust gas recirculation and/or aftertreatment are employed for regulating nitric oxide (NO x ) and soot emission levels. However, a totally homogeneous mixture is unachievable in practical engines. Inherent inhomogeneities in fuel concentration and temperature may significantly affect the ignition and combustion processes, hence various control strategies attract research interest. The present work demonstrates the potential of emission reduction in Diesel engines operating under high boost conditions through a combination of multi-injection strategies and high EGR schemes
    corecore