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Scalar dissipation rate statistics in turbulent swirling jets
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1)University of Huddersfield, Queensgate, Huddersfield, HD1 3DH,
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2)Imperial College London, London, SW7 2AZ, UK

(Dated: 10 June 2016)

The scalar dissipation rate statistics were measured in an isothermal flow formed by

discharging a central jet in an annular stream of swirling air flow. This is a typical

geometry used in swirl-stabilised burners, where the central jet is the fuel. The flow

Reynolds number was 29000, based on the area-averaged velocity of 8.46 m/s at the

exit and the diameter of 50.8 mm . The scalar dissipation rate and its statistics were

computed from two-dimensional imaging of the mixture fraction fields obtained with

planar laser induced fluorescence of acetone. Three swirl numbers, S, of 0.3, 0.58 and

1.07 of the annular swirling stream were considered. The influence of the swirl number

on scalar mixing, unconditional and conditional scalar dissipation rate statistics were

quantified. A procedure, based on a Wiener filter approach was used to de-noise

the raw mixture fraction images. The filtering errors on the scalar dissipation rate

measurements were up to 15%, depending on downstream positions from the burner

exit. The maximum of instantaneous scalar dissipation rate was found to be up to 35

s−1, while the mean dissipation rate was 10 times smaller. The probability density

functions of the logarithm of the scalar dissipation rate fluctuations were found to

be slightly negatively skewed at low swirl numbers and almost symmetrical when

the swirl number increased. The assumption of statistical independence between

scalar and its dissipation rate was valid for higher swirl numbers at locations with

low scalar fluctuations and less valid for low swirl numbers. The deviations from

the assumption of statistical independence were quantified. The conditional mean

of the scalar dissipation rate, the standard deviation of the scalar dissipation rate

fluctuations, the weighted probability of occurrence of the mean conditional scalar

dissipation rate and the conditional probability are reported.

a)Corresponding author:v.stetsyuk@hud.ac.uk
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I. INTRODUCTION

The dissipation rate, which is identified as a characteristic diffusion time scale imposed

by the mixing field1, requires modelling in essentially all computational models for non-

premixed combustion. The scalar dissipation rate can be used for instance in a PDF-flamelet

approach in which species mass fraction, mean reaction rate, temperature etc. are pre-

computed as a function of two variables, namely mixture fraction and the scalar dissipation

rate and stored in a library. The scalar dissipation rate was also identified as the criterion

that was able to predict the local extinction phenomenon of diffusion flames. It was pointed

out that local extinction of diffusion flames occurred where the conditional dissipation rate

exceeded a critical quenching value and global extinction took place when the cumulative

probability of the conditional dissipation rate exceeded a critical threshold1–4.

In the context of combustion modelling that is based on ensemble-averaged (RANS) or

spatially-averaged (LES) equations describing the fluid motion, the probability distribution

of the conditional scalar dissipation rate and the corresponding mean value must also be

known. A common practice is based on the assumption of statistical independence between

the scalar and its dissipation rate, which means that their joint probability density function

is equal to the product of their individual probability density functions4,5. The probability

density function of the conditional scalar dissipation rate was typically assumed to be log-

normally distributed, as it was firstly suggested by Kolmogorov6. A detailed knowledge of

the statistical properties of mixture fraction fluctuations and their conditional dissipation

rate is also required in conventional flamelet methods, advanced flamelet and transported

PDF methods, which include the fluctuations of the scalar dissipation rate7–9, stochastic

well-stirred reactor models10 and conditional moment closure models11. Measurements of

scalar dissipation rate and its statistics (conditional and unconditional) are rare despite their

importance for a wide range of turbulent flow applications, especially in complex flows.

Assumptions of, e.g. statistical independence in simple jet flows may not be valid in

complex (swirling) flows. Moreover, flows with high and low swirl numbers may exhibit

different behaviour in terms of statistics of scalar dissipation rate and mixture fraction.

In addition, transition from low to high swirl number, and wise versa, can qualitatively

change assumptions that are adopted in computational fluid dynamics. Indeed, it will be

demonstrated later that statistical dependence is valid for flows with high swirl number. In
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this context, the swirl number is the key variable that influences the flow behaviour and

hence, all the statistics should be linked to this single parameter.

In the context of combustion calculations three parameters are usually required; the

mean scalar dissipation rate conditional on the stoichiometric mixture fraction, the weighted

probability of occurrence of the mean conditional scalar dissipation rate and the standard

deviation of conditional dissipation rate. The weighted probability of occurrence of the

mean conditional scalar dissipation rate represents the molecular diffusion in scalar space

in the transport equation for the scalar p.d.f. and is proportional to the mean reaction

rate12. The conditional scalar dissipation rate is also proportional to the mean reaction

rate13. Mastorakos14 demonstrated that the probability of autoignition was proportional

to conditional scalar dissipation rate. The maximum of conditional scalar dissipation rate

was not the stoichiometric mixture fraction as it would have been intuitively expected. In

addition, the extinction of a diffusion flame occurs when the conditional scalar dissipation

rate exceeds a certain value14.

The conditional mean, the weighted probability of occurrence and the standard deviation

of fluctuations of conditional dissipation rate are computed as follows:

〈χ|zst = z∗〉 ≡
∞∫

0

χP (χ|zst)dχ =
1

Nst

Nst∑
i=1

(χ|zst) (1)

Eχ|z ≡ 〈χ|zst = z∗〉P (z = zst) (2)

〈
χ

′|zst = z∗
〉
≡
(∞∫

0

(χ− 〈χ|zst〉)2 P (χ|zst) dχ
)1/2

=

=

(
1
Nst

Nst∑
i=1

(χ|zst − 〈χ|zst〉)2
i

)1/2 (3)

where χ is scalar dissipation rate, zst is stoichiometric mixture fraction, P is probability

density function, 〈χ|zst = z∗〉 is mean scalar dissipation rate conditional on the stoichio-

metric mixture fraction, Eχ|z is weighted probability of occurrence of the mean conditional

scalar dissipation rate,
〈
χ

′|zst = z∗
〉

is standard deviation of conditional dissipation rate,

Nst is number of scalar dissipation rate samples corresponding to the stoichiometric mixture

fraction. The averaging denoted by the angular brackets is only carried out for events that

satisfy the conditions to the right of the vertical rule.
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Measurements of the scalar dissipation rate are not straightforward due to temporal and

spatial resolution requirements. Such measurements require high spatial resolution, which

is comparable to Batchelor or Kolmogorov length scale (for Schmidt number equal to one).

These requirements are not easily achieved in practice due to optical system limitations,

e.g. laser sheet thickness, optical aberrations etc. Effective resolution and noise-induced

apparent dissipation, i.e. artificial over- or underestimation of scalar dissipation rate are

mainly determined by the system transfer function15,16. The system transfer function will

be dependent on optics quality, experimental system alignment and random fluctuations of

noise in the measured data and is discussed later in the manuscript. Appropriate de-noising

techniques must be used in order to obtain meaningful statistics of scalar dissipation rate.

A description of de-noising technique, which is employed in this work to obtain ’true’ scalar

dissipation rates, will be discussed in subsequent sections.

Measurements of scalar dissipation rate have been demonstrated in a number of papers.

Dibble17 presented the first laser-based measurements of scalar dissipation rate in turbu-

lent non-premixed, non-reacting jets and the first laser-based or otherwise in reacting jet

flames by using an optical multichannel analyser. Scalar dissipation rate measurements and

associated issues were also reported in a number of papers18–28. Even though the scalar dis-

sipation rate and structural information about the scalar fields was addressed in a number

of papers, the statistics were limited to either counterflow geometry or to non-swirling jets.

The scalar dissipation rate statistics in turbulent swirling flows have not been examined to

the best of our knowledge. Our aim is, therefore, to extend knowledge to configurations

relevant to practical combustors, which are typically based on swirl-stabilized burners. In

this context, the primary goal of the present work was to provide the statistical information,

relationships between scalar fluctuations and their dissipation rate, as well as to present

both unconditional and conditional scalar dissipation rate statistics.

Though the computation of scalar dissipation rate generally involves the computation of

3D gradient of the mixture fraction, it is practically hard to measure the 3D fields of mix-

ture fraction. In homogeneous and isotropic turbulent fields, the three-dimensional scalar

dissipation rate can be easily calculated, because the statistics of the mixture fraction fluc-

tuations are the same in all three directions. In this case, one of the components can be

measured and the calculation of the scalar dissipation rate is quite straightforward. The

scalar dissipation rate, like other variables in turbulent flows, fluctuates in time and space
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and its formal definition is given by the following formula, where the diffusivity for the scalar

(acetone vapour), Da, is assumed to be constant and equals to 0.124 cm2/s.

χz = 2Da

[(
∂z

∂x

)2

+

(
∂z

∂y

)2
]

(4)

where z is mixture fraction, Da is acetone diffusivity in air and x and y are spatial coordinates

correspondingly

The remaining paper is structured as follows: The next section describes the swirling air

flow burner and the optical instrumentation used to measure the scalar (mixture fraction),

which was then used to evaluate the mixture fraction scalar dissipation rate. The spatial

requirements and de-noising technique for the dissipation rate measurements are also briefly

discussed. The last section describes the results and discusses the findings. The paper ends

with a summary of the main conclusions.

II. EXPERIMENTAL ARRANGEMENT AND INSTRUMENTATION

A. Experimental setup

The flow section (item 15 in Fig. 1) consisted of two concentric pipes with the annu-

lus supplying swirling air and the central pipe delivering air seeded with acetone vapour

(measured scalar quantity)29,30. The central pipe (fuel) had an inner diameter Df of 15 mm

and an outer diameter of 18 mm, was 0.75 m long and was located concentrically in the

outer pipe of inner diameter, D of 50.8 mm and centred within it by three screws at 25 mm

upstream of the burner exit. The flow development section was 0.264 m long.

The annular air stream was split into two separately metered streams named ’swirling’ and

’axial’ air (Fig. 1). The swirling stream was created by passing air through a static swirler

containing six milled tangential slots to impart angular momentum. The static swirler was

located in a plenum chamber in which the swirling air was combined with the second stream

that delivered ’axial air’. Metal plates were installed in the axial and tangential air sections

of the plenum chamber to ensure that the axial and tangential air streams were distributed

uniformly upstream of the inlets into the annular air supply stream of the burner, where

they were combined to control the strength of swirl at the burner exit. The tangential and

axial air flowrates were metered by flowmeters after correction to atmospheric pressure and
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temperature. The axial direction, parallel to the flow propagation, was denoted as ’y’ and

the radial direction, perpendicular to the main direction of the flow, as ’x’. The swirl number

used as the primary variable was computed by using the velocity profiles obtained by Laser

Doppler Anemometry30. The swirl number is defined as follows:

S =
2GΘ

GZD
(5)

GΘ = 2πρ
R∫

r=ri

WrUrdr

GZ = 2πρ
R∫

r=ri

UUrdr

(6)

where ri is radius of the inner pipe, ρ is density, U is axial velocity component, W is

tangential velocity component, GΘ is axial flux of angular momentum, Gz is axial flux of

axial momentum, S is swirl number, R is radius of the outer pipe, D is diameter of the outer

pipe.

All swirling flows can generally be split into two groups i.e. weak (S < 0.6) and strong

(S > 0.6) swirling flows. From the survey of experimental studies of swirling flows a quali-

tative picture can be drawn. For low swirl numbers S < 0.5, the flow patterns demonstrate

so-called a ’solid body’ rotation, which is initially observed at S ≈ 0.1. For high swirl

number S > 0.5, flow develops a structure with rapidly rotating core, which is surrounded

by annulus of low vorticity. A flow reversal is observed in the central region of the swirling

flow31. Even though, weak swirling flows have limited industrial applicability it is necessary

to investigate such regimes and compare with highly swirled flows, especially when statistics

of the scalar dissipation is considered. In this work, swirl numbers S = {0.3, 0.58, 1.07} were

chosen to be the same as it was chosen by Milosavljevic30 for consistency and completeness.

In addition, the same burner will be used to study reacting swirling flows, flame stabilisation

and thermal dissipation rates. The flame stabilisation is affected by the swirl number and,

therefore, both low and high swirl numbers have to be considered.

The Reynolds numbers in the central (fuel) pipe and in the ’secondary air’ coflow stream

were 3770 and 28662 respectively based on the bulk velocity of 3.77 m/s, 8.46 m/s and the

pipe diameter of Df = 15 mm, D = 50.8 mm. The Batchelor length scale was in the range

of ≈300-400 µm for the range of S of 0.3-1.07 and was computed from the dissipation rate

spectra at the wavenumber corresponding to 2% of the peak value of the dissipation rate
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spectrum. The dissipation rate spectra were computed as the average of the squared Fourier

transform of the fluctuations of the axial and radial gradients of the mixture fraction. The

mean mixture fraction gradient in the axial direction was subtracted from instantaneous

values of the gradient of the mixture fraction in the axial direction. The final dissipation

rate spectra, computed from 1500 images, were finally spatially averaged so as to obtain the

averaged spectra in the axial or radial directions. Examples of the spectra for the central

jet flow and the flow with S=0.3 are shown in Figure 2. An extended inertial range is seen

for the flow with S=0.3, thus suggesting that Batchelor scale should be less than in case of

central jet flow (non-swirling flow). It is also interesting to note that the Batchelor scale

obtained from the spectrum that was computed from radial-derivative is smaller than that

from the spectrum computed from axial-derivative. This suggests that turbulence is more

developed and intensive in radial direction, which is also expected in swirling flows.

A Q-switched Nd:YAG frequency-quadrupled 266 nm laser from Continuum Inc. (item

3 in Fig. 1) was used to excite the acetone vapour fluorescence. The laser pulse width was

in the range of 5-7 ns at Full Width at Half Maximum (FWHM). A single dichroic mirror

(item 2 in Fig. 1) was used to decrease the amount of 532 nm light reaching the burner and

to steer the laser beam from the laser exit port towards the experimental setup and sheet

forming optics. The sheet forming optics consisted of a single cylindrical positive lens with

a focal length of 310 mm (item 1 in Fig. 1). The lens was used to focus the laser beam into

a thin waist, with focal point located at the axis of symmetry of the flow. The average laser

energy delivered at the test section was 75 mJ/pulse.

An Imager Intense R© CCD camera from LaVision Inc. was used to record the images (item

12 in Fig. 1). This camera was equipped with a 50 mm f1.4 Nikkor lens. A 13 mm extension

ring was also used after the camera lens for closer focusing. A BG3 bandpass Schott filter

(item 13 in Fig. 1) was used in front of the camera lens in order to block any remaining

532 nm light that might interfere with the acquired signal. The optical magnification was

determined by using a calibration target plate and was found to be 0.0263 mm/pixel.

The laser beam waist was measured directly by using a CCD camera technique. The

positive cylindrical lens was rotated to 90 ◦, so the laser sheet thickness could be captured

by measuring the intensity of acetone vapour fluorescence. Averaging of 50 images minimized

laser beam intensity fluctuations. The beam waist was defined as the diameter where the

beam irradiance was 1/e2 or 0.135 times its maximum value and found to be 0.158 mm. The
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FIG. 1. A schematic view of laser sheet downstream positions during measurements, flow arrange-

ment (top) and the experimental setup (bottom). Laser sheet positions are shown in absolute

values mm, normalized by the fuel pipe internal diameter Df = 15 mm and by the burner internal

diameter D = 50.8 mm. 1 - positive cylindrical lens (f=310 mm), 2 - dichroic mirror, 3 - laser, 4-

beam dump, 5 - traverse handle, 6 - vertical ruler, 7 - thermometer, 8 - heater, 9 - acetone seeder,

10 - acetone container, 11 - thermocouple, 12 - CCD camera, 13- BG3 bandpass Schott filter.

average laser sheet intensity distribution used in the correction procedure was obtained by

supplying acetone vapour through the axial fuel nozzle without air coflow and subsequent

measuring the intensity at the jet potential core. In order to eliminate the dark noise, a

set of images was recorded, averaged and then simply subtracted from each image obtained
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during the experiments. No background image was recorded during experiments, because

incident background light was blocked by the BG3 filter.

The synchronization of the laser flashlamp, the laser Q-switch and the camera was en-

sured by using a programmable PC-based timing unit (PTU) using TTL pulses. The laser

flashlamp was fired continuously at 10 Hz. The laser Q-switch was triggered every time when

an image was recorded. The camera was triggered at the same time as the Q-switch trigger

(TTL pulse was sent to Q-switch and to the camera simultaneously) and camera exposure

time was set to 1 µs. The camera shutter opened before the start of the laser pulse and

closed after the end of the laser pulse. Both the laser and the camera were electronically

controlled from software package DaVis 7.2 c©, provided by LaVision Inc., installed on a

computer running Windows XP c©.

A planar laser-induced fluorescence (PLIF) technique was used to obtain the acetone

concentration fields (mixture fraction fields) in the isothermal swirling flow. The PLIF is

a non-invasive measurement technique that can provide qualitative as well as quantitative

characterization of the flow fields. The fluorescence signal is directly related to the concen-

tration of tracer species in the flow being investigated and the laser energy. This technique

can provide a set of detailed flow field maps both resolved spatially and temporally. The

PLIF technique is, therefore, an ideal method to study non-reacting flows in various com-

bustion systems. Moreover, PLIF technique can be used under a wide range of operating

conditions and, therefore, has been widely applied to study various aspects of mixing in

non-reacting jets.

Acetone has been used as a tracer for many years. The choice of acetone is simple due

to its outstanding properties and in many ways can be regarded as an ideal tracer for the

PLIF technique due to its linear relationship between the fluorescent intensity, laser power

and acetone concentration in the flow. Acetone has also an accessible absorption spectrum

at the UV. The fluorescent signal is emitted in the visual range of light spectrum 350-600

nm and the corresponding peak of the fluorescent emission spectrum is between 450 to 500

nm. Fluorescent signal can be recorder onto a digital sensor of a CCD camera and after

which can be post processed as required. Moreover, the signal from acetone fluorescence is

relatively high and its interpretation in actual fuel concentration is in fact straightforward.

The PLIF method is based on molecule excitation to a higher electronic energy level by

absorbing the energy of a laser beam. The molecule at this energy state is unstable and will
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go from upper energy level to the lower energy level emitting photon of the same energy as

the original absorbed photon. The emitted photon can be detected and used to measure the

light intensity, which is proportional to a number of molecules, or simply concentration of a

tracer. The measured acetone fluorescent signal (the total number of photons) at each pixel

position on the CMOS sensor (x, y) can be written as follows:

SF(x, y) = ηef
Ω

4π
f1(T )χmnVcB12Ev

A21

A21 +Q21

(7)

where ηef is transmission efficiency of collection optics, Ω is solid angle collected by imag-

ing optics, f1(T ) is fractional population of lower laser-coupled state in the absence of the

laser field, χm is the mole fraction of the absorbing species, n is the total gas number den-

sity, Vc is collection volume imaged onto photodetector element, B12 is Einstein B coefficient

for single-photon laser stimulated process, Q21 is the collision transfer coefficient, Ev is the

spectral fluence of the laser, A21 is Einstein A coefficient for spontaneous emission.

All the quantities in the equation above are dependent on the position in the flow via

pressure, temperature and tracer’s concentration. For conditions of constant temperature

and pressure the ratio of acetone fluorescent signal over the fluorescent signal at a reference

position of known acetone concentration can provide measurements of the mixture fraction.

If the reference position is at the exit of the fuel nozzle in a potential core, where no mixing

with ambient air occurs, then the above mentioned ratio is directly related to the mixture

fraction z(x, y).

z(x, y) =
SF (x, y)

SFref
(x, y)

(8)

where SF (x, y) is measured acetone fluorescence intensity, SRref
(x, y) is reference acetone

fluorescence intensity.

The raw images that were recorded during PLIF experiments Iraw(x, y) were corrected

by using the following formula. This formula takes into account several different sources of

noise.

Icor(x, y) =
Iraw(x, y)− Ibgr(x, y)− Idark(x, y)

Lsh(x, y)
(9)

where Icor is corrected image of acetone fluorescence intensity, Ibgr(x, y) is background image,

Idark dark image, i.e. image formed by a photodetector in absence of light, Lsh is average
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laser sheet intensity distribution.

The background image Ibgr(x, y) is usually acquired with the same camera settings and

with the laser firing but without flow in the test volume. The background image that

was acquired during experiments was blank, i.e. no photons were detected. This was

achieved through BG3 filter that blocked ambient light. In addition, no reflections from the

burner were observed. Reflections from the dust particles (due to 532 nm light wavelength

component in the laser beam) that were present in the test volume were also blocked by

the BG3 filter. The dark image was acquired with a cap placed on the lens and then was

simultaneously subtracted from recorded images during imaging. The average laser sheet

intensity distribution was obtained by supplying acetone vapour through the axial fuel nozzle

without air co-flow and subsequent measuring the intensity in the jet potential core. The

laser sheet profile measured in this way is negligibly different from the laser sheet profile that

can be obtained from the dye cells24. The variations of the profile from laser shot-to-shot

were negligible.

The reference position (fluorescence intensity) was at the exit of the fuel jet in a potential

core, where no mixing with ambient air occurs (without swirling co-flow). In order to

reduce uncertainties in acetone fluorescent intensity at a reference position of known acetone

concentration, the reference measurements were obtained over a small square region (1×1

mm) within the potential core of the acetone vapour jet without co-flow of air and for air

flow rate of 40 l/min passing through the acetone seeder. The acetone seeder (item 9 in

Fig. 1) was placed on an electrical heater (item 8 in Fig. 1), which maintained constant

temperature of 45◦C in order to stabilise acetone evaporation rate. RS-1313 1-channel

thermometer and an N-type thermocouple of 1.5 mm diameter and 500 mm length were

used to measure acetone temperature in the acetone seeder. Post-processing of the raw

images was performed by software developed in MATLAB c©.

A set of reference measurements consisted of 2650 images was taken continuously in

potential core at air flow rate of 40 l/min passing through the seeder. The relationship

between the reference intensity and a number of acquired images was deduced. A six-degree

polynomial fit was then used to approximate this relationship. This approximation was used

in computation of reference intensity as a function of acquired images in order to reduce

uncertainties in the fluorescent intensity at the reference position. The time-dependent

fluorescent signal at a reference position is then given by the following equation as follows:
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SFref = p1 ·N5
i,img + p2 ·N4

i,img + p3 ·N3
i,img + p4 ·N2

i,img + p5 ·Ni,img + p6 (10)

where N is the number of acquired images.

p1 = −2.9668e− 014

p2 = 2.2016e− 010

p3 = −5.818e− 007

p4 = 0.00061902

p5 = −0.36668

p6 = 1105.4

(11)

The fluctuations of the acquired acetone intensity are mainly due to the fluctuations

in laser power from pulse to pulse. The fluctuations in laser power from pulse to pulse

were minimised by using longer warm-up time (typically longer than 30 min) and were

measured to be less than 3%, which is less than filtering errors of 15% (due to Wiener

filtering procedure). It is, therefore, assumed that fluctuations in laser power from pulse to

pulse should not significantly affect the absolute values of scalar dissipation rate.

B. Data processing

The most commonly used cameras in imaging experiments are currently based on CCD

image sensors and the image quality is the most important characteristic. The image quality

is related to the actual spatial resolution and the ability to record the contrast of a real object

to the camera detector. The magnification (scale factor) of any optical system is typically

determined by using a calibrating target with known spatial resolution, e.g. 1951 USAF

resolution test chart. However, in several applications, the nominal spatial resolution (or

magnification) is not a limiting factor and differs from the so-called ’real’ spatial resolution.

For instance, in mixture fraction gradient measurements (or scalar dissipation rate measure-

ments) the point spread function (PSF), which is defined as the intensity distribution at an

image plane, produced by imaging an infinitesimally small portion of light can represent the

actual optical resolution16.

The PSF is related to an optical transfer function (OTF) via a modulation transfer

function (MTF). The OTF is defined as the ability to transfer the contrast of a real object
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FIG. 2. Determination of the Batchelor length scale from the measured normalized dissipation rate

power spectra at y/Df = 1 for acetone vapour jet only without coflow (left) and S=0.3 (right).

Vertical lines denote the position of the wavenumber corresponding to 2% of the spectrum peak

value. The dissipation rate spectrum was normalized by its maximum. Solid line - denotes the

dissipation rate spectrum computed from radial-derivative; dashed line −− denotes the dissipation

rate spectrum computed from axial-derivative.

to the image plane at various spatial frequencies. The modulation transfer function, which

is the Fourier transform of the PSF can be measured by various methods, e.g. knife-edge

scanning technique and a slant edge method. In this work, we used the slant edge method

due to its simplicity and fast measuring time. The detailed description of this method can

be found in ISO 12233:2000 (Photography. Electronic still-picture cameras. Resolution

measurements) and is not presented here. The spatial resolution that corresponded to 50%

MTF was computed to be ≈350 µm. In this study, the effective spatial resolution that was

determined by the MTF and a proposed image denoising technique were appropriate for

quantifying the ’true’ scalar dissipation rate measurements32.

In this work, the Wiener-Kolmogorov filtering procedure (Wiener filter for simplicity)

was used to reduce noise that was present in the measured data. This filtering procedure

is based on a signal comparison between noiseless (estimated) and noise corrupted signal

(measured)24,32,33. In order to be able to compute the Wiener filter, the power spectral

densities of both the noise-free image and the noise must be known, which are typically not

known in advance. It was suggested33,34 that a recorded set of images (measured mixture

13



fraction) can be used to estimate the general trend of the true signal spectral density and

the corresponding variations of the noise density. If the general trend of the true signal is

known, then it will be possible to model the true signal for the wave numbers, where the

noise contributes significantly. A detailed description of the Wiener filter with application

to scalar dissipation rate measurements is given by Soulopoulos24,32. In this research, the

estimated scalar dissipation rates after filtering were accurate to within 15% depending on

the swirl number and the axial positions in the flow32.

The mixture fraction measurements are based on the linear scaling of the fluorescent

intensity and; hence, the camera linearity is an important parameter. The camera linearity

is the relationship between the intensity of the incoming light and CCD chip voltage (or

camera signal). In this work, the camera linearity was measured by plotting the camera

signal from each individual pixel as a function of exposure time. The relationship between

the exposure time and the camera signal from all pixels was linear.

The unconditional statistics, which are useful for turbulent reacting flow models as, for

example, advanced flamelet and transported p.d.f. closures, which include the fluctuations

of the scalar dissipation rate, are presented here in terms of the probability density functions

of the scalar dissipation rate at the various positions in the flow, for all axial locations and

swirl numbers. Data for each p.d.f. was compiled by considering a local window of axial

length of 1.58 mm ≈4λβ and radial length of 3.87 mm ≈10λβ containing 8820 data points

and over 1500 images resulting in 13e9 dissipation rate data points for each spatial location.

Window dimensions were chosen on the basis of sufficient number of samples and their

locations were chosen to represent both homogeneous and highly segregated scalar fields, i.e

shear layer and centreline. Five spatial locations were considered and are shown in Figure

3. All probability density functions of the scalar dissipation rate of the mixture fraction

are presented here in terms of P (C), where P denotes probability density function and C is

defined as follows:

C =
ln (χ)− ln (χ)

σln(χ)

(12)

where σln(χ) is standard deviation of natural logarithm of scalar dissipation rate

In order to assess the effect of the chosen window size for calculation of the p.d.f., differ-

ent window sizes were also tested. The p.d.fs. of the scalar dissipation rate were computed

from window sizes ranging from 0.1×0.1 mm to 10×10 mm. The p.d.f. reproduced from
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the smallest windows contained 24000 data points, while the p.d.f. reproduced from the

larger windows consisted more than 13e6 values. The p.d.f. reproduced from the smallest

regions reproduced the p.d.f. computed from the larger sample windows and its trend was

well captured at high swirl numbers, i.e. 0.58-1.07 and all spatial window locations. For low

swirl number of 0.3, deviations from p.d.fs. computed from large windows were sometimes

observable. Nevertheless, the range of the dissipation fluctuations was well captured even

if the p.d.f. was not fully converged. It can be suggested that in regions where high in-

termittency is observed the smallest window cannot provide an adequate description of the

corresponding probability density function due to insufficient statistics. It was also noted

that high intermittency was observed in low swirling flow with S=0.3.

It should be noted that the orientation of the scalar dissipation rate vector may be away

from the plane of the measurements. The measurements presented here are the projection

of the vector on the measurement plane. Depending on the swirl number, the orientation

of the scalar dissipation rate vector can approach the measurement plane, e.g. for S=0.3.

For higher swirl number, the orientation of the vector cannot be evaluated from planar

measurements. However, if scalar dissipation rate is linked to the local mixing regime rather

than to specific regions in the flow, it can be assumed that the conclusions from planar

measurements are plausible. Direct extrapolation of presented results to reacting flows

should also be considered carefully. It is practically hard to measure spatial distribution of

mixture fraction in reacting flows. Therefore, simplified measurements are needed, which

can be carefully extended to reacting flows. For instance mixing of reactants in swirling

flows and subsequent ignition of ’distributed mixture fraction’ in a flow recirculation zone.

Prior to the flow recirculation zone there is pure mixing before flame stabilisation, where

conclusions from this work may be considered.

C. Uncertainty in flow rate measurements

During experiments the air referred as to swirling component was measured by KDG

Rotameter Series 2000 variable-area flowmeter, which was individually calibrated to accuracy

of Class 1.6 i.e. ±1.2% of indicated flow and plus ±10.4% full scale reading. The axial

component of air was measured by Fisher Control Limited flowmeter rated at a maximum

flow of 1000 l/min. The flow rate of the mixture of acetone and air was measured by a
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FIG. 3. Window positions, where scalar dissipation rate statistics were evaluated. Window posi-

tions 1,3 and 2,4 are located at different distance from the burner centreline. Window 5 is located

at a cusp of the laser beam and at the burner centreline. The window positions are also shown with

respect to spatially distributed mean mixture fraction for different swirl number and y/Df = 1.

flowmeter from Platon Inc. (NGXV series) with the accuracy of ±1.25%. The fluorescence

intensity variation due to temperature variations was insignificant, based on 0.36%/K decay

for 266 nm35.

The temperature in a stirred, isothermal bath of hot water was measured by the same

equipment, which was used in air temperature measurements in the measurement plane. Un-

certainty of the swirl numbers was computed as 0.3±0.0152, 0.58±0.0288 and 1.07±0.0657.

Uncertainty in Reynolds number was computed as 28662±1456 (S=0.3), ±1422 (S=0.58)

and ±1760 (S=1.07). Finally, uncertainty in bulk velocity of swirling co-flow was computed
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as 8.46±0.430 (S=0.3), ±0.420 (S=0.58) and ±0.519 (S=1.07).

III. RESULTS AND DISCUSSIONS

A. Mixture fraction distribution

Example of measured instantaneous (with resolution equal to Batchelor scale of ≈300µm)

mixture fraction spatial distributions at different axial distances y/Df from the burner exit

for S=0.3, 0.58, 1.07 is shown in Figures 4-6. The diameter of the central pipe Df is 15

mm, the dashed vertical line at x/R = 0 indicates its axis and the small vertical lines at

x/R ≈ ±0.3 denote the edges of the pipe. In order to gather reliable statistical results and

obtain statistically stationary data, time averaging was performed for a different number of

samples N (number of instantaneous images). In this work, time averaging was performed

for N = 5000 and for N = 1500, which demonstrated similar results. This indicated that

mixture fraction statistics were sufficiently converged for a smaller number of instantaneous

images (N = 1500).

Instantaneous mixture fraction distribution was highly affected by the swirl number. For

low swirl number of 0.3, highly non-uniform scalar field is observed for all downstream

locations. For swirl numbers of 0.58 and 1.07, the distribution of mixture fraction is more

homogeneous at all downstream locations.

Figures 7-9 show the spatial distribution of the time averaged (mean) mixture fraction

computed from 1500 instantaneous images for S=0.3, 0.58 and 1.07. The figure shows that

the flow shape is slightly non-symmetrical around the axis for S=0.58. The same slightly non-

symmetrical flow shape is also found for S=1.07. As expected, the mixture fraction values

were maximum close to the burner centreline and reduced with radial distance, because

the scalar concentration was lower at the edge of the central jet. The mixing process was

enhanced by the presence of swirl, which lead to lower scalar concentration at far away

distances from the burner exit. A uniform scalar field near the centre line is observed as

expected.

This slightly asymmetrical scalar distribution may be due to the weak internal recircu-

lation zone that always exists in swirling flows with sufficiently high swirl numbers. This

non-symmetrical distribution was also reported by Milosavljevic30 and could be linked to the
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FIG. 4. Measured instantaneous mixture fraction distribution at y/Df = 1 − 7 for annular swirl

number S=0.3. Radial scale was normalised by burner radius R = 25.4 mm. The position of the

edges of the central pipe delivering the acetone vapour jet is shown by the vertical short lines

at x/R ≈ ±0.3. Note that instantaneous mixture fraction distributions at different downstream

positions were obtained from different realisations and are not temporally correlated.

presence of the recirculation zone, which was also supported by the velocity measurements,

which were performed by Milosavljevic30. It is hardly unlikely that this non-symmetrical

scalar distribution is due to wakes downstream three locking screws retaining the central

pipe delivering the acetone vapour jet.
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FIG. 5. Measured instantaneous mixture fraction distribution at y/Df = 1 − 7 for annular swirl

number S=0.58. Radial scale was normalised by burner radius R = 25.4 mm. The position of

the edges of the central pipe delivering the acetone vapour jet is shown by the vertical short lines

at x/R ≈ ±0.3. Note that instantaneous mixture fraction distributions at different downstream

positions were obtained from different realisations and are not temporally correlated.
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FIG. 6. Measured instantaneous mixture fraction distribution at y/Df = 1 − 7 for annular swirl

number S=1.07. Radial scale was normalised by burner radius R = 25.4 mm. The position of

the edges of the central pipe delivering the acetone vapour jet is shown by the vertical short lines

at x/R ≈ ±0.3. Note that instantaneous mixture fraction distributions at different downstream

positions were obtained from different realisations and are not temporally correlated.
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FIG. 7. Measured mean mixture fraction distribution at y/Df = 1 − 7 for annular swirl number

S=0.3. Radial scale was normalised by burner radius R = 25.4 mm. The position of the edges of the

central pipe delivering the acetone vapour jet is shown by the vertical short lines at x/R ≈ ±0.3.
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FIG. 8. Measured mean mixture fraction distribution at y/Df = 1 − 7 for annular swirl number

S=0.58. Radial scale was normalised by burner radius R = 25.4 mm. The position of the edges of

the central pipe delivering the acetone vapour jet is shown by the vertical short lines at x/R ≈ ±0.3.

Note that slightly asymmetrical scalar distribution may be due to the weak internal recirculation

zone that always exists in swirling flows with sufficiently high swirl numbers.
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FIG. 9. Measured mean mixture fraction distribution at y/Df = 1 − 7 for annular swirl number

S=1.07. Radial scale was normalised by burner radius R = 25.4 mm. The position of the edges of

the central pipe delivering the acetone vapour jet is shown by the vertical short lines at x/R ≈ ±0.3.

Note that slightly asymmetrical scalar distribution may be due to the weak internal recirculation

zone that always exists in swirling flows with sufficiently high swirl numbers.
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Figures 10-12 show measured standard deviation of fluctuations of mixture fraction at

y/Df = 1− 7 for annular flow swirl number of 0.3, 0.58 and 1.07. A uniform distribution of

low values of measured standard deviation of fluctuations of mixture fraction at y/Df = 7

is clearly observed. On the other hand, at spatial locations close to the burner exit, the

flow field is highly inhomogeneous, which results in high mixture fraction fluctuations. The

highest values of the standard deviation of fluctuations of mixture fraction are found within

the confines of the central pipe delivering the acetone vapour jet (x/R ≈ ±0.3). Note that

the standard deviation distribution along burner centreline x/R = 0 is characterized by low

and approximately constant standard deviation values (σz =0.08-0.1).

FIG. 10. Measured standard deviation of fluctuations of mixture fraction at y/Df = 1 − 7 for

annular flow swirl number S=0.3. Radial scale was normalised by burner radius R = 25.4 mm.

The position of the edges of the central pipe delivering the acetone vapour jet is shown by the

vertical short lines at x/R ≈ ±0.3.
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FIG. 11. Measured standard deviation of fluctuations of mixture fraction at y/Df = 1 − 7 for

annular flow swirl number S=0.58. Radial scale was normalised by burner radius R = 25.4 mm.

The position of the edges of the central pipe delivering the acetone vapour jet is shown by the

vertical short lines at x/R ≈ ±0.3.
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FIG. 12. Measured standard deviation of fluctuations of mixture fraction at y/Df = 1 − 7 for

annular flow swirl number S=1.07. Radial scale was normalised by burner radius R = 25.4 mm.

The position of the edges of the central pipe delivering the acetone vapour jet is shown by the

vertical short lines at x/R ≈ ±0.3.
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B. Instantaneous and mean scalar dissipation rate

An example of instantaneous spatially distributed raw scalar dissipation rate (computed

from raw mixture fraction image) and the result of the application of the proposed denoising

procedure is shown in Figure 13. It is clearly seen that the scalar dissipation rate, which

is computed from the raw mixture fraction distribution without denoising does not contain

meaningful information.

Figures 14-16 show spatially distributed instantaneous scalar dissipation rate calculated

after the application of the Wiener filter for S=0.3, 0.58 and 1.07, computed at different

axial positions y/Df . The maximum of instantaneous scalar dissipation rate was found to

be 35 s−1 depending on instantaneous realization, axial position and swirl number. The

general observation was that the scalar dissipation rate increased with the increase of swirl

number for axial positions y/Df = 1, 3 and 5. Highly non-homogeneous scalar field at lower

downstream positions leads to large scalar gradients. As a result, high scalar dissipation

rate is observed. Axial positions away from the nozzle exit and for highest swirl number,

i.e. y/Df = 7 and S=1.07, demonstrate that the scalar dissipation rate decreases to very

small values due to highly homogeneous scalar fields indicating well-mixed regime, in which

mixture fraction gradients are small. As it was expected, the highest scalar dissipation rate

was observed at the interface between the acetone vapour jet and the annular air stream, i.e.

at the radial positions of x/R = ±0.3, especially at downstream positions that are close to

the nozzle exit, i.e. y/Df = 1, 3 for low and intermediate swirl numbers (S=0.3, 0.58). The

structure of the scalar distribution can be characterized as the thickness of the dissipation

rate layers, which are seen as wrinkled flakes.

Figures 17-19 show the spatial distribution of the mean scalar dissipation rate computed

from 1500 instantaneous realisations for S=0.3, 0.58 and 1.07. The values of mean scalar

dissipation rate are typically much smaller than the maximum values found on instantaneous

images, e.g. in Figures 14-16. The values of up to 35 s−1, assuming acetone diffusivity

value of 12.4 mm2/s, can be found on instantaneous realizations, while mean values are

approximately 3 s−1 or less. The higher mean scalar dissipation rate values correspond to

lower axial positions, where the mixture fraction gradients are larger and scalar fields are

highly segregated (not well mixed locally).

The highest values of the scalar dissipation rate are concentrated at the fuel jet periphery,
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FIG. 13. Instantaneous spatially distributed scalar dissipation rate χ, s−1 computed from denoised

and raw images at y/Df = 1 for S=0.58. Radial scale was normalised by burner radius R = 25.4

mm. The position of the edges of the central pipe delivering the acetone vapour jet is shown by

the vertical short lines at ≈ ±0.3 x/R. Vertical dashed line at x/R = 0 is the burner centreline.

From top to bottom: 1) Raw mixture fraction image; 2) Denoised mixture fraction image; 3) Scalar

dissipation rate computed from raw image (1); 4) Scalar dissipation rate computed from denoised

image (2).

i.e. at x/R ≈ ±0.3 for y/Df = 1, 3, and can be seen even on instantaneous images. However,

at larger axial distances, far away from the jet origin, no distinct location of high scalar

dissipation rate can be easily observed. The relatively large high-dissipation rate structures

are, therefore, observed at locations where higher scalar fluctuations are found, i.e. close to

the jet exit. These structures disappear with the increase of the axial distance from the jet

exit.
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FIG. 14. Instantaneous spatially distributed scalar dissipation rate χ, s−1 at y/Df = 7, 5, 3, 1 (from

top to bottom) for S=0.3. Radial scale was normalised by burner radius R. The position of the

edges of the central pipe delivering the acetone vapour jet is shown by the vertical short lines

at ≈ ±0.3 x/R. Vertical dashed line at x/R = 0 is the burner centreline. Note that the scalar

dissipation rate was computed from instantaneous mixture fraction distribution shown in Figure

4.

C. Unconditional statistics

In this section, the probability density function (p.d.f.) of the mixture fraction dissipation

rate is presented. The results are useful for turbulent reacting flow models as, for example,

advanced flamelet and transported p.d.f. closures, which include the fluctuations of the

scalar dissipation rate. The unconditional statistics are presented in terms of the proba-

bility density functions of the scalar dissipation rate at the various positions in the flow.

Window dimensions were chosen on the basis of sufficient number of samples. Five spatial

locations were considered and are shown in Figure 3. Locations were chosen to represent

both homogeneous and highly segregated scalar fields, i.e shear layer and centreline.
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FIG. 15. Instantaneous spatially distributed scalar dissipation rate χ, s−1 at y/Df = 7, 5, 3, 1 (from

top to bottom) for S=0.58. Radial scale was normalised by burner radius R. The position of the

edges of the central pipe delivering the acetone vapour jet is shown by the vertical short lines at

≈ x/R = ±0.3. Vertical dashed line at x/R = 0 is the burner centreline. Note that the scalar

dissipation rate was computed from instantaneous mixture fraction distribution shown in Figure

5.

Figures 20-22 present the p.d.f. of the fluctuations of the logarithm of the scalar dissipa-

tion rate computed from 5 windows at different axial positions for S=0.3, 0.58 and S=1.07.

The p.d.fs. of the scalar dissipation rate are found to be slightly negatively skewed at low

swirl number of 0.3 and almost symmetrical when the swirl number increases to 0.58-1.07.

This negative skewness was also reported in a number of previous publications19,24,25,36–38.

The assumption of a log-normal distribution of the scalar dissipation rate is usually em-

ployed in modelling of turbulent reacting flows and was also experimentally confirmed in

turbulent flows39. Nevertheless, this assumption might be questionable and the deviations

from the log-normal distribution can be observed.

We report that the probability density functions of the scalar dissipation rate are nega-
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FIG. 16. Instantaneous spatially distributed scalar dissipation rate χ, s−1 at y/Df = 7, 5, 3, 1 (from

top to bottom) for S=1.07. Radial scale was normalised by burner radius R. The position of the

edges of the central pipe delivering the acetone vapour jet is shown by the vertical short lines at

≈ x/R = ±0.3. Vertical dashed line at x/R = 0 is the burner centreline. Note that the scalar

dissipation rate was computed from instantaneous mixture fraction distribution shown in Figure

6.

tively skewed, but become almost symmetrical when a well-mixed flow regime is observed,

i.e. S=1.07 at y/Df = 5, 7. It is interesting to note that at swirl number of 1.07 at all

axial positions and all five windows, the p.d.f. can be closely approximated by a standard

log-normal distribution, i.e. with the standard deviation of 1 and a mean of 0. Therefore, it

is proposed that the level of mixing directly affects the p.d.f. of scalar dissipation rate and

in case of a well-mixed flow regime, i.e. far away from nozzle exit and high swirl number,

only small deviation from log-normality is expected.
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FIG. 17. Spatial distributions of mean scalar dissipation rate 〈χ〉 , s−1 computed from 1500 images

at y/Df = 7, 5, 3, 1 (from top to bottom) for S=0.3. The position of the edges of the central pipe

delivering the acetone vapour jet is shown by the vertical short lines at x/R ≈ ±0.3. Vertical

dashed line at x/R = 0 is the burner centreline.

D. Joint statistics between scalar and its dissipation rate

This section quantifies the departures from statistical independence of the scalar fluctu-

ations and their dissipation rate by comparing the joint p.d.f. of scalar and its dissipation

rate with the product of the individual p.d.fs. of scalar and dissipation rate. The joint p.d.f.

is the association of the mixture fraction fluctuations with the fluctuations of the scalar dis-

sipation rate. In modelling of turbulent reacting flows, it is usually assumed the statistical

independence between the scalar fluctuations and their dissipation rate. This approximation

has not yet been evaluated experimentally in swirling flows. The statistical independence

assumption means that the joint p.d.f. is equal to the product of the individual p.d.fs.

In statistics, the dependence of two random variables or two data sets can be assessed

by the so-called correlation coefficient. If any two random variables are independent, the

correlation coefficient is zero. On the other hand, if the correlation coefficient is zero it
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FIG. 18. Spatial distributions of mean scalar dissipation rate 〈χ〉 , s−1 computed from 1500 images

at y/Df = 7, 5, 3, 1 (from top to bottom) for S=0.58. The position of the edges of the central

pipe delivering the acetone vapour jet is shown by the vertical short lines at x/R ≈ ±0.3. Vertical

dashed line at x/R = 0 is the burner centreline.

does not guarantee that the two random variables are statistically independent, because

the coefficient detects only linear dependencies between the two variables. The correlation

coefficient or Pearson’s correlation coefficient when applied to a sample is commonly defined

as the sample correlation coefficient according to the following equation, where z and χ are

the mixture fraction and its dissipation rate. The correlation coefficient ranges from -1 to

+1. If the correlation coefficient of the scalar fluctuations and the scalar dissipation rate

is zero, the scalar and its dissipation rate is not necessarily statistically independent. For

non-zero values of correlation coefficient the scalar fluctuations and the scalar dissipation

rate are statistically related40.
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FIG. 19. Spatial distributions of mean scalar dissipation rate 〈χ〉 , s−1 computed from 1500 images

at y/Df = 7, 5, 3, 1 (from top to bottom) for S=1.07. The position of the edges of the central

pipe delivering the acetone vapour jet is shown by the vertical short lines at x/R ≈ ±0.3. Vertical

dashed line at x/R = 0 is the burner centreline. The values of mean scalar dissipation rate at

y/Df = 5, 7 are circa 0.01 and uniformly distributed.

rz,χ =

N∑
i=1

(zi − z̄) (χi − χ̄)√
N∑
i=1

(zi − z̄)2

√
N∑
i=1

(χi − χ̄)2

(13)

In general, the correlation coefficient can serve as an initial estimator of statistical in-

dependence and further investigation by comparing the joint p.d.f. to the product of the

individual p.d.fs. is usually required.

Pearson’s correlation coefficients are shown in Figure 23 as a function of axial distances

and window locations for two swirl numbers of 0.58 and 1.07. Non-zero correlation coeffi-

cients are direct indicators that the scalar and its dissipation rate are statistically related.

However, the relationship between the scalar and its dissipation rate is not linear and is also

34



FIG. 20. The p.d.fs. of the fluctuations of the logarithm of the scalar dissipation rate from

windows 1-5, computed at y/Df = 1, 3, 5, 7 for S=0.3. Gaussian function with expected value of 0

and standard deviation of 1 is also shown in each plot. Corresponding window numbers are shown

in top left corner of each plot. Window dimensions are 1.58 mm × 3.87 mm (≈4λβ×10λβ) and

their locations are shown in bottom right corner and in Figure 3.

dependent on windows positions. In addition, the statistical dependence is rather week for
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FIG. 21. The p.d.fs. of the fluctuations of the logarithm of the scalar dissipation rate from windows

1-5, computed at y/Df = 1, 3, 5, 7 for S=0.58. Gaussian function with expected value of 0 and

standard deviation of 1 is also shown in each plot. Corresponding window numbers are shown in

top left corner of each plot. Window dimensions are 1.58 mm × 3.87 mm (≈4λβ×10λβ) and their

locations are shown in bottom right corner and in Figure 3.
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high swirl number. If the assumption of independence between the scalar fluctuations and

the scalar dissipation rate is valid, then by definition the joint probability distribution of the

scalar fluctuations and their dissipation rate will be equal to the product of the individual

p.d.f. In this work, the joint p.d.f. was computed from the logarithm of the instantaneous

values of the scalar dissipation rate minus the mean of the logarithm of the scalar dissipation

rate, normalized by the standard deviation of the logarithm of the scalar dissipation rate

and from the instantaneous values of the mixture fraction minus the mean of the mixture

fraction, normalized by the standard deviation of the mixture fraction fluctuations. The

join p.d.f. was computed by using 50 two-dimensional bins. In Figures 24-25 of joint p.d.f.,

the x and the y−axes are plotted according to the following equations.

x− Axis =
ln (χ)− 〈ln (χ)〉

σln(χ)

(14)

y − Axis =
z − 〈z〉
σz

(15)

Figures 24-25 can assess the assumption of statistical independence. These plots are

arranged in two columns, where left column corresponds to the joint p.d.f. of the scalar and

its dissipation rate, while right column corresponds to the product of individual p.d.fs. of

the scalar and its dissipation rate. The plotting range was the same for all plots and ranged

from -4 to +4 standard deviations. The product of two p.d.fs. was computed by using the

same bin number as in the joint p.d.f. The joint p.d.f. and the product of the p.d.fs. were

plotted by using 20 contour lines.

At all five window locations (only one location is shown here) at y/Df = 1 and for

S=1.07 the contours of the product of the individual p.d.fs. appear close to circular, even

though not entirely symmetric (Figure 25). The joint p.d.f. has an oval shape and appears

to be skewed towards both negative and positive dissipation rate fluctuations. The centre

of the joint p.d.f. and the product of individual p.d.fs. seem to have the same origin. The

assumption of statistical independence is therefore in better agreement with the experimental

data at regimes of homogeneous scalar field or well-mixed regime. However, deviations from

the assumption of statistical independence are clearly observed, where the scalar is not

homogeneous and large scalar fluctuations are present.

The joint p.d.f. for low swirl number (Figure 24) is skewed towards negative values
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of scalar dissipation rate with large negative fluctuations of mixture fraction, while the

product of the individual p.d.fs. sometimes displays bimodal features. This can be due to

large sampling window and jet flapping effect. However, the bimodal p.d.fs were observed

even for smaller filter sizes41. Therefore, the assumption of statistical independence is not

held, since the two shapes are quite different and vary with location.

In fact, the product of the individual p.d.fs. reproduces the probability of occurrence

of values lower than the mean, i.e. large negative fluctuations, even though the shape is

quite different from that of the joint p.d.f. In addition, the joint p.d.f. demonstrates that

intermittency plays an important role and can affect the shape of the p.d.f., even though not

much, which is not accounted by the product of individual p.d.fs. The intermittency causes

the joint p.d.f. to be skewed towards negative values of the logarithm of scalar dissipation

rate.

Preliminary conclusions on statistical independence of the scalar fluctuations and the

scalar dissipation rate in swirling flows are summarized as follows: The scalar fluctuations

were strongly correlated at the boundaries of the mixing layer or shear layer, especially for

low swirl numbers. The assumption of statistical independence between the scalar fluctu-

ations and their dissipation rate, commonly introduced in modelling of turbulent reacting

flows was, therefore, not tenable for low swirl numbers.

On the other hand, the assumption of statistical independence between the scalar fluctu-

ations and their dissipation rate was justified in case of high swirling flows (S>0.6). It was

also found that the skewness of the joint p.d.f. was dependant on the swirl number as well

as on the intermittency. The intermittency was not found when the swirl number was large,

namely 1.07, and the shape of the contours of the joint p.d.f. was then close to circular.

The joint p.d.f. gives the measure of the joint probability between scalar fluctuations

and their dissipation rate, even though does not provide a physical explanation for the

processes that give rise to the correlation between the scalar fluctuations and their dissipation

rate. This can give the conditions under which the assumption of statistical hypothesis

breaks down. This is useful information, but incomplete, because it is unknown which

components contribute more, i.e. axial or radial components of scalar dissipation rate.

The contribution of each part of the scalar fluctuations and the scalar dissipation rate to

their overall correlation can be understood by using a weighting function. The weighting

function w (z, ln (χ)) is defined as product of mixture fraction z, logarithm of the scalar
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dissipation rate and their joint p.d.f. so that the double integral over scalar fluctuations

and the dissipation rate is the correlation coefficient19,24. This is demonstrated in equations

(11)-(14).

w
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z
′
, χ

′
)

= z
′
χ

′
pdf

(
z
′
, χ

′
)
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′
χ

′
pdf

(
z
′
, χ

′
)

(17)

z
′
=
z − z̄
σz

(18)

χ
′
=

ln (χ)− ln (χ)

σln(χ)

(19)

It is also possible to assess the relative importance of the axial, radial or both components

of the scalar dissipation rate to the overall correlation by computing the weighted integrands

from single components of the scalar dissipation rate (axial or radial). This approach pro-

vides a rapid overview of identifying the origin of the correlation between the scalar and

its dissipation rate. The weighted integrands computed from both axial and radial compo-

nents of the joint p.d.f. and radial component only are presented in Figure 26 for S=1.07 at

y/Df = 1 computed from window 2. The weighted integrands from both components (radial

and axial) of the scalar dissipation rate demonstrated that correlations were primarily from

large negative scalar dissipation rate fluctuations, which tend to be rare events but have

very large contribution.

Figure 27 shows the weighted integrands computed from axial and radial components of

the scalar dissipation rate for window 2 by using the joint p.d.f. at y/Df = 1 for S=0. For

the flow conditions without swirling motion, i.e. for S=0 (acetone vapour jet only), the radial

and axial components contribute almost equally to the overall correlation. The contribution

of radial component increases, as the level of mixing increases, which is illustrated in Figure

28. A general conclusion is that in swirling flows the contribution from the axial and the

radial component of the scalar dissipation rate is not equal and is directly related to the

degree of mixing, i.e. the swirl number. It could be assumed that for a certain swirl number

(0<S<1.07), the contribution from axial and radial components to the overall correlation

would be equal.
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FIG. 22. The p.d.fs. of the fluctuations of the logarithm of the scalar dissipation rate from windows

1-5, computed at y/Df = 1, 3, 5, 7 for S=1.07. Gaussian function with expected value of 0 and

standard deviation of 1 is also shown in each plot. Corresponding window numbers are shown in

top left corner of each plot. Window dimensions are 1.58 mm × 3.87 mm (≈4λβ×10λβ) and their

locations are shown in bottom right corner and in Figure 3.
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FIG. 23. Pearson’s correlation coefficients of the scalar and its dissipation rate as a function of

axial distances and window locations for S=0.58 (left) and S=1.07 (right). Window dimensions

are 1.58 mm × 3.87 mm (≈4λβ×10λβ) and their locations are shown in Figure 3.

FIG. 24. Joint p.d.f. of the scalar and its dissipation rate (left) and the product of individual p.d.f.

(right) at y/Df = 1 for S=0.3, computed for window 2. Plotting range is ±4 standard deviations.

Other window sizes demonstrate similar trend.
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FIG. 25. Joint p.d.f. of the scalar and its dissipation rate (left) and the product of individual p.d.f.

(right) at y/Df = 1 for S=1.07, computed for window 1. Plotting range is ±4 standard deviations.

Other window sizes demonstrate similar trend.

FIG. 26. The weighted integrands computed from both axial and radial components of the scalar

dissipation rate (left) and the radial component only (right) for window 2 by using the joint p.d.f.

at y/Df = 1 for S=1.07. Note that radial component contributes more, which is indicated by

maximum value shown on the colorbar.
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FIG. 27. The weighted integrands computed from axial (left) and radial components (right) of the

scalar dissipation rate for window 2 by using the joint p.d.f. at y/Df = 1 for S=0 (no swirling

co-flow). Note that almost equal contribution from axial and radial components is observed.

FIG. 28. The weighted integrands computed from axial (left) and radial components (right) of the

scalar dissipation rate for window 2 by using the joint p.d.f. at y/Df = 1 for S=1.07.
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E. Conditional scalar dissipation rate

The conditional statistics of the scalar dissipation rate were computed by dividing the

mixture fraction space in a number of bins, of typical width less than 0.01 mixture fraction

values and a typical size of 150000 samples in each bin. Averaging takes place in each

bin so that the conditional mean of the scalar dissipation rate is computed. Similarly, the

conditional standard deviation is computed from the data in each bin. Typically, 110 equally

spaced bins were used to split the mixture fraction space containing 12e6 values, which

resulted in 107000-280000 samples in each bin (depending on the bin number). Therefore,

the statistical uncertainty is negligible.

The conditional mean of the scalar dissipation rate for S=0.3, 0.58 and 1.07 is shown in

Figures 29-31. Standard deviation of scalar dissipation rate conditional on mixture fraction

is shown in Figures 32-34. The conditional mean and the standard deviation of the scalar dis-

sipation rate have a well-defined hyperbolic-shaped structure in the mixture fraction space,

which is well-known from the measurements in non-swirling flows. General observation of

the mean scalar dissipation rate reveals that the mean increases with the mixture fraction,

reaching a maximum value, then gradually decreases and reaches zero. With increasing swirl

number the conditional mean decreases and its maximum values shift to lower mixture frac-

tion values. The conditional mean also shifts to lower mixture fraction values with higher

axial distances y/Df .

The location of the maximum conditional mean shifts from 0.6 mixture fraction units

for S=0.3, 0.4 units for S=0.58 and 0.3-0.4 units for the highest swirl number of 1.07. For

lower swirl numbers, the conditional mean has clearly visible smooth shape, which somehow

resembles a bell curve, while, for higher swirl number and higher degree of mixing, the

conditional mean is converging to delta function. The variation of the conditional mean is

consistent with the fact that the mean approaches zero at large and small mixture fraction

values. This is due to the fact that larger and smaller mixture fraction values correspond to

either jet fluid or ambient fluid, where scalar gradients are zero. The weighted probability of

occurrence of the mean conditional scalar dissipation rate for S=0.3 is shown in Figure 35.

The weighted probability of occurrence of the mean conditional scalar dissipation coincides

with the conditional mean of the scalar dissipation rate and, hence, is presented for S=0.3

only42.
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The standard deviation of the scalar dissipation rate conditioned on the mixture fraction

demonstrates similar trends as the conditional mean with similar bell-shaped curve. The

maximum values of the standard deviation attain maximum at the same mixture fraction

units as the conditional mean. Even though the peak of the standard deviation of the scalar

dissipation rate is approximately constant irrespective of swirl number, the form of the

distribution is dependant on the swirl number. The distribution of the standard deviation

follows the conditional mean pattern and for high swirl numbers becomes ’sparse scattered’

(Figure 34 windows 2 and 4).

In addition, the conditional probability density function of the scalar dissipation rate,

evaluated for an arbitrary mixture fraction value of 0.3, is presented here (Figure 36). Con-

ditional probabilities for other z demonstrate similar trend. The conditional p.d.fs. were

evaluated from the logarithm of the scalar dissipation rate minus the mean of the loga-

rithm of the scalar dissipation rate, normalized by the standard deviation of the logarithm

of the scalar dissipation rate. The conditional and unconditional p.d.fs. are very similar

with small deviation from log-normal distribution and large negative fluctuations around

the mean. Similar observations of the conditional p.d.f have been made for other values of

the scalar dissipation rate and the conclusions can be extended to all mixture fraction units

independent of swirl number.
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FIG. 29. Mean scalar dissipation rate conditional on mixture fraction, as a function of axial dis-

tances and window locations for S=0.3. Window dimensions are 1.58 mm × 3.87 mm (≈4λβ×10λβ)

and their locations are shown in bottom right corner and in Figure 3.
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FIG. 30. Mean scalar dissipation rate conditional on mixture fraction, as a function of ax-

ial distances and window locations for S=0.58. Window dimensions are 1.58 mm × 3.87 mm

(≈4λβ×10λβ) and their locations are shown in bottom right corner and in Figure 3.
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FIG. 31. Mean scalar dissipation rate conditional on mixture fraction, as a function of ax-

ial distances and window locations for S=1.07. Window dimensions are 1.58 mm × 3.87 mm

(≈4λβ×10λβ) and their locations are shown in bottom right corner and in Figure 3.
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FIG. 32. Standard deviation of scalar dissipation rate conditional on mixture fraction, as a function

of axial distances and window locations for S=0.3. Window dimensions are 1.58 mm × 3.87 mm

(≈4λβ×10λβ) and their locations are shown in bottom right corner and in Figure 3.
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FIG. 33. Standard deviation of scalar dissipation rate conditional on mixture fraction, as a function

of axial distances and window locations for S=0.58. Window dimensions are 1.58 mm × 3.87 mm

(≈4λβ×10λβ) and their locations are shown in bottom right corner and in Figure 3.
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FIG. 34. Standard deviation of scalar dissipation rate conditional on mixture fraction, as a function

of axial distances and window locations for S=1.07. Window dimensions are 1.58 mm × 3.87 mm

(≈4λβ×10λβ) and their locations are shown in bottom right corner and in Figure 3.
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FIG. 35. Weighted probability of occurrence of the mean conditional scalar dissipation rate for

S=0.3 as a function of axial distances and window locations for S=0.3. Window dimensions are 1.58

mm × 3.87 mm (≈4λβ×10λβ) and their locations are shown in bottom right corner and in Figure

3. Note that the weighted probability of occurrence of the mean conditional scalar dissipation

coincides with the conditional mean of the scalar dissipation rate (similar for S=0.58 and 1.07).
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FIG. 36. Conditional probability for S=0.58 at y/Df = 1 − 7 computed for window 2 (Figure

3). Conditional probability is shown for z=0.3. Conditional probabilities for other z demonstrate

similar trend and are not shown here.
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IV. CONCLUSIONS

The scalar dissipation rate was measured in a turbulent isothermal swirling non-reacting

flow, where a central axial jet was injected in a swirling annular flow. The flow has typi-

cal geometry of swirl-stabilised burners. The swirling annular flow Reynolds number was

29000 based on area-averaged velocity of 8.46 m/s and a diameter of 50.8 mm. The scalar

dissipation rate was computed from two-dimensional measurements of the mixture fraction

based, on laser induced acetone fluorescence using the associated spatial gradients of mix-

ture fraction as a function of axial distance (along the flow centreline) and radial locations

(perpendicular to main flow direction) up to 2 outer (annular) nozzle diameters from the

burner. The swirl number was varied and the values of 0.3, 0.58, 1.07 were measured. A

procedure, based on Wiener-Kolmogorov filtering theory, was used to denoise the raw mix-

ture fraction images obtained from the planar laser induced fluorescence of acetone. The

scalar dissipation rate filtering errors were up to 15%, depending on downstream positions

from the burner exit and swirl number.

The general observation was that the scalar dissipation rate increased with the increase of

swirl number for axial positions y/Df = 1, 3, 5. The maximum value of instantaneous scalar

dissipation rate was found to be up to 35 s−1. The values of the mean scalar dissipation

rate were around 6 times smaller than the instantaneous values. The higher mean scalar

dissipation rate occurred at the near nozzle regions and at the fuel jet periphery, where the

mixture fraction gradients were the largest. The probability density functions of the loga-

rithm of the scalar dissipation rate fluctuations were found to be slightly negatively skewed

at low swirl number (S=0.3) and almost symmetrical when the swirl number increased to

0.58 and 1.07.

The joint probability density functions of the scalar fluctuations and the scalar dissipation

rate were computed and compared with the product of the individual p.d.fs. in order to

evaluate the statistical independence between the scalar and its dissipation rate. Five spatial

locations were chosen to represent both homogeneous and highly segregated scalar fields, i.e

shear layer and centreline. Window dimensions were chosen on the basis of sufficient number

of samples. At all five locations in the flow, the contours, of the product of the individual

p.d.fs. followed a circular pattern, even though not entirely symmetric. The contours of

the joint p.d.f. had a little oval shape and seemed skewed towards both negative and
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positive dissipation rate fluctuations. The statistical independence (between scalar and its

dissipation rate) was therefore in better agreement with the experimental data for regions of

homogeneous scalar field or well-mixed regime, which corresponded to higher axial locations

and large swirl number.

The mean of the scalar dissipation rate conditioned on the mixture fraction, standard

deviation of the scalar dissipation rate, the weighted probability of occurrence of the mean

conditional scalar dissipation rate and the conditional probability were also reported. The

conditional mean scalar dissipation rate increased with the mixture fraction reaching a

maximum value for different mixture fraction values (depending on y/Df and S). For

low swirl numbers, the conditional mean had distinct parabolic shape, while for high swirl

numbers and high y/Df , the shape could not be characterised by a simple distribution, e.g.

parabolic, Gaussian etc. The standard deviation of fluctuations of scalar dissipation rate

conditioned on mixture fraction demonstrated similar trend as the conditional mean with

similar bell-shaped curve. The weighted probability of occurrence of the mean conditional

scalar dissipation rate was bell-shaped and positively skewed and followed the conditional

mean pattern. The maximum values of the weighted probability were similar to those in the

conditional mean for all swirl numbers.
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