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The scalar dissipation rate x=DVzVz (z mixture traction, D 1s diffusivity) requires modeling in essentially all models tor non-premixed
combustion. Peters (1983) identitied the scalar dissipation rate as a characteristic diffusion time scale, imposed by the mixing field.
Direct measurements of scalar dissipation rate in flames are extremely ditficult. If the temperature 1s assumed to be a function ot
mixture fraction 1=f(3) and by assuming [.e=1, the relationship between the scalar dissipation and the thermal dissipation rate is
according to* 4 = x(dT/dz) whete y =22(VT-VT) is thermal dissipation rate.  *D.A. Everest, J.F. Driscoll, W.J.A. Dahm, D.A. Feikema. Combustion and Flame 101 (1995) 58-68.

10.1

* measurements of thermal dissipation rate in turbulent

non-premixed, reacting swirling jets

A central fuel nozzle 1s surrounded by a concentric swirling air tlow.

The “tuel” used was a mixture with volumetric composition of
22.1%CH,, 33.2%H,, 44.7%N, (stoichiometric mixture fraction 1s

0.167). The combination of this fuel and the air yields a Rayleigh i —————
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scattering cross section, which is constant within 3% across the
flame. Scale factor was 0.025 (mm / PiniD, while the actual spatial Instantaneous (lett) and mean (right) temperature distribution
resolution, quantified by the modulation transfer function (MTF), for $=0.58 at y/D1=10, 7, 5, 3, 1 (from top to bottom).
was 0.3(mm) at 50% MTE. The Kolmogorov scale was circa 0.15 mm. Tttt —T— 1 —1—1 o 1800
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The swirl number of swirling co-tlow was in the range ot 0.3-1.07. | I 1400
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The Reynolds number of swirling and jet fuel flow are 28662 and | -12000 -
3770 respectively. Rayleigh scattering optical diagnostic technique P
was used to measure temperature distribution, which then was . 600
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converted into thermal dissipation rate after appropriate denosing.
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* The flame was stably attached to the fuel nozzle for all S.

* Higher downstream mean temperatures for higher S.

* Pd.f. of temperature fluctuations 1s dependent on S.

* Lower temperature tluctuations for higher downstream distances
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. .
A photograph of the flame as a function of swirl number.

From left to right S=1.07, 0.58 and 0.3.



