22 research outputs found

    Theoretical evaluation of the power efficiency of a moored hybrid floating platform for wind and wave energy production in the Greek seas

    Get PDF
    In this study, an extreme value analysis of wind and wave parameters is presented for three specific locations in the Greek seas that are known to be advantageous in terms of joint power production (both offshore wind and wave) and bathymetric conditions. The analysis is conducted via the Peak-Over-Threshold method, examining wind speed, significant wave height and peak wave period data from the ERA5 reanalysis dataset. Moreover, a multi-purpose floating platform suitable for offshore energy production is presented, which combines wind and wave energy resources exploitation and can be adequately utilized at the selected locations. The analysis is built to incorporate the solutions of the diffraction, motion-dependent and pressure-dependent radiation problems around the floating structure, along with the mooring line and wind turbine (WT) characteristics. Subsequently, a coupled hydro-aero-elastic analysis was performed in the frequency domain, while a dynamic analysis was conducted in order to evaluate the mooring characteristics. Lastly, offshore wind output and absorbed wave energy values were estimated, and different types of mooring systems were compared in terms of efficiency. It has been concluded that the wind energy capacity factor is higher than 50% in all the examined locations, and by the mooring system comparison, the tension-leg platform (TLP) represents the best-case scenario for wave energy absorption

    TIDAL ENERGY: THE CASE OF EURIPUS’ STRAITS

    Get PDF
    The tidal energy potential of low current tidal and marine currents is investigated in this work. Existing data on the current velocity and sea level at the Euripus’ strait in Evia, Greece, is used to compute the energy yield based on contemporary turbine designs. Requirements, limitations and opportunities concerning the exploitation of low velocity tidal streams are discussed. The exploitation of tidal energy technology in conjunction with RES microgrids is proposed for coastal areas with abundance of sun and wind such as the Mediterranean islands

    Marine Renewable Energy Clustering in the Mediterranean Sea: The Case of PELAGOS Project

    Get PDF
    The main ideas presented in this work are an outcome of the Interreg MED project PELAGOS (Promoting innovative nEtworks and cLusters for mArine renewable energy synerGies in Mediterranean cOasts and iSlands). Since Blue Energy development is at its very beginning in the Mediterranean Sea, the aim of the paper is to present and discuss in depth the key-issues for a Marine Renewable Energy (MRE) cluster development in the Mediterranean and reveal its necessity for the commercial and sustainable development of Blue Energy in the area. This cluster is expected to stimulate the relevant Blue Energy sectors under the perspective of smart and sustainable growth. A healthy cluster is based on an efficient cluster policy. The main policy constituents (innovation, legislation and financial frameworks) are discussed taking into account the interrelated characteristics that are expected to specify the commercial development of MRE in the area. Key issues that can contribute to the establishment and acceleration of deployment of the related technological innovation are identified, and existent hindrances and challenges encountered in MRE sector are determined. The importance of solid financing instruments and strong collaborations among interested stakeholders is also highlighted for the viability of the MRE cluster. Finally, as an example of the cluster activities at a national level, the Greek Hub for Blue Energy is introduced. In this respect, aspects in terms of its structure and the services provided to its members are analyzed

    CoCoNet: towards coast to coast networks of marine protected areas (from the shore to the high and deep sea), coupled with sea-based wind energy potential

    Get PDF
    This volume contains the main results of the EC FP7 “The Ocean of Tomorrow” Project CoCoNet, divided in two sections: 1) a set of guidelines to design networks of Marine Protected Areas in the Mediterranean and the Black Seas; 2) a smart wind chart that will allow evaluating the possibility of installing Offshore Wind Farms in both seas. The concept of Cells of Ecosystem Functioning, based on connectivity, is introduced to define natural units of management and conservation. The definition of Good Environmental Status, as defined in the Marine Strategy Framework Directive, is fully embraced to set the objectives of the project, by adopting a holistic approach that integrates a full set of disciplines, ranging from physics to bio-ecology, economics, engineering and many sub-disciplines. The CoCoNet Consortium involved scientist sfrom 22 states, based in Africa, Asia, and Europe, contributing to build a coherent scientific community.peer-reviewe

    Long-Term Variability of Wind Speed and Direction in the Mediterranean Basin

    No full text
    In this work, the ERA5 reanalysis dataset, with its fine spatial and temporal resolution, is used to study the wind speed and direction characteristics in the Mediterranean basin from 1979 to 2020. Their variability, trend and mean values, as well as their association, are examined in the monthly, annual and interannual/decadal time scales. The long-term variability of the wind direction is assessed using the angular variance, while the mean annual and interannual variability are used for the wind speed. The most characteristic and constant flow systems appear in the Gulf of Lion (Mistral) and the Aegean Sea during the summer (Etesian winds). The mean annual variability maximizes in the northern part of the basin, while the western part appears to have the most variable wind directions, while the fastest increasing wind speeds appear in the southwestern Levantine sub-basin. The long-term linear trend for the mean, the 95th and 99th quantiles of annual wind speed and the number of occurrences of extreme wind events have been also assessed. For particular areas, there is an increasing tendency in both intensity and frequency of occurrence of extreme wind events. Τhe linear-circular correlation coefficient has been implemented in order to quantify the linear association between the wind direction and the wind speed. This parameter demonstrates higher annual values for the Mistral wind in the Gulf of Lion and the Etesian winds in the Aegean Sea during the summer. Finally, the comparison of the results of ERA5 with the results of ERA-Interim highlighted significant differences in the Mediterranean wind speed and direction characteristics

    Long-Term Variability of Wind Speed and Direction in the Mediterranean Basin

    No full text
    In this work, the ERA5 reanalysis dataset, with its fine spatial and temporal resolution, is used to study the wind speed and direction characteristics in the Mediterranean basin from 1979 to 2020. Their variability, trend and mean values, as well as their association, are examined in the monthly, annual and interannual/decadal time scales. The long-term variability of the wind direction is assessed using the angular variance, while the mean annual and interannual variability are used for the wind speed. The most characteristic and constant flow systems appear in the Gulf of Lion (Mistral) and the Aegean Sea during the summer (Etesian winds). The mean annual variability maximizes in the northern part of the basin, while the western part appears to have the most variable wind directions, while the fastest increasing wind speeds appear in the southwestern Levantine sub-basin. The long-term linear trend for the mean, the 95th and 99th quantiles of annual wind speed and the number of occurrences of extreme wind events have been also assessed. For particular areas, there is an increasing tendency in both intensity and frequency of occurrence of extreme wind events. Τhe linear-circular correlation coefficient has been implemented in order to quantify the linear association between the wind direction and the wind speed. This parameter demonstrates higher annual values for the Mistral wind in the Gulf of Lion and the Etesian winds in the Aegean Sea during the summer. Finally, the comparison of the results of ERA5 with the results of ERA-Interim highlighted significant differences in the Mediterranean wind speed and direction characteristics

    Offshore Wind and Wave Energy Complementarity in the Greek Seas Based on ERA5 Data

    No full text
    In this work, 20 years (2000–2019) of ERA5 wave and wind data are analyzed and evaluated for the Greek Seas by means of in-situ measurements derived from the POSEIDON marine monitoring system. Four different statistical measures were used at six locations, where in-situ wind and wave measurements are available from oceanographic buoys. Furthermore, the ERA5 wind and wave datasets were utilized for the estimation of the available wind and wave energy potential for the Greek Seas, as well as for the assessment of complementarity and synergy between the two resources. In this respect, an event-based approach was adopted. The spatial distribution of the available wind and wave energy potential resembles qualitatively and quantitatively the distributions derived from other reanalysis datasets. Locations with high synergy and complementarity indices were identified taking into account water depth. Finally, taking into consideration a particular offshore wind turbine power curve and the power matrix of the PELAMIS wave energy converter, the estimation of the combined energy potential on a mean annual basis is performed

    Wave Analysis for Offshore Aquaculture Projects: A Case Study for the Eastern Mediterranean Sea

    No full text
    The investigation of wave climate is of primary concern for the successful implementation of offshore aquaculture systems as waves can cause significant loads on them. Up until now, site selection and design (or selection) of offshore cage system structures on extended sea areas do not seem to follow any specific guidelines. This paper presents a novel methodology for the identification of favorable sites for offshore aquaculture development in an extended sea area based on two important technical factors: (i) the detailed characterization of the wave climate, and (ii) the water depth. Long-term statistics of the significant wave height, peak wave period, and wave steepness are estimated on an annual and monthly temporal scale, along with variability measures. Extreme value analysis is applied to estimate the design values and associated return periods of the significant wave height; structures should be designed based on this data, to avoid partial or total failure. The Eastern Mediterranean Sea is selected as a case study, and long-term time series of wave spectral parameters from the ERA5 dataset are utilized. Based on the obtained results, the most favorable areas for offshore aquaculture installations have been identified
    corecore