105 research outputs found

    Processing of diffusion MR images of the brain: from crossing fibres to distributed tractography

    Get PDF
    Diffusion-weighted (DW) magnetic resonance imaging allows the quantification of water diffusion within tissue. Due to the hindrance of water molecules by the various tissue compartments, probing for the diffusive properties of a region can provide information on the underlying structure. This is particularly useful for the human brain, whose anatomy is complex. Diffusion imaging provides currently the only tool to study the brain connectivity and organization non-invasively and in-vivo, through a group of methods, commonly referred to as tractography methods. This thesis is concerned with brain anatomical connectivity and tractography. The goal is to elucidate problems with existing approaches used to process DW images and propose solutions and methods through new frameworks. These concern data from two popular DW imaging protocols, diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI), or Q-ball imaging in particular. One of the problems tackled is resolving crossing fibre configurations, a major concern in DW imaging, using data that can be routinely acquired in a clinical setting. The physical constraint of spatial continuity of the diffusion environment is imposed throughout the brain volume, using a multi-tensor model and a regularization method. The new approach is shown to improve tractography results through crossing regions. Quantitative tractography algorithms are also proposed that, apart from reconstructing the white matter tracts, assign relative indices of anatomical connectivity to all regions. A fuzzy algorithm is presented for assessing orientational coherence of neuronal tracts, reflecting the fuzzy nature of medical images. As shown for different tracts, where a-priori anatomical knowledge exists, regions that are coherently connected and possibly belong to the same tract can be differentiated from the background. In a different framework, elements of graph theory are used to develop a new tractography algorithm that can utilize information from multiple image modalities to assess brain connectivity. Both algorithms inherently consider crossing fibre information and are shown to solve problems that affect existing methods

    Structural organization of the corpus callosum predicts attentional shifts after continuous theta burst stimulation

    Get PDF
    Repetitive transcranial magnetic stimulation (rTMS) applied over the right posterior parietal cortex (PPC) in healthy participants has been shown to trigger a significant rightward shift in the spatial allocation of visual attention, temporarily mimicking spatial deficits observed in neglect. In contrast, rTMS applied over the left PPC triggers a weaker or null attentional shift. However, large interindividual differences in responses to rTMS have been reported. Studies measuring changes in brain activation suggest that the effects of rTMS may depend on both interhemispheric and intrahemispheric interactions between cortical loci controlling visual attention. Here, we investigated whether variability in the structural organization of human white matter pathways subserving visual attention, as assessed by diffusion magnetic resonance imaging and tractography, could explain interindividual differences in the effects of rTMS. Most participants showed a rightward shift in the allocation of spatial attention after rTMS over the right intraparietal sulcus (IPS), but the size of this effect varied largely across participants. Conversely, rTMS over the left IPS resulted in strikingly opposed individual responses, with some participants responding with rightward and some with leftward attentional shifts. We demonstrate that microstructural and macrostructural variability within the corpus callosum, consistent with differential effects on cross-hemispheric interactions, predicts both the extent and the direction of the response to rTMS. Together, our findings suggest that the corpus callosum may have a dual inhibitory and excitatory function in maintaining the interhemispheric dynamics that underlie the allocation of spatial attention

    Estimation of white matter fiber parameters from compressed multiresolution diffusion MRI using sparse Bayesian learning

    Get PDF
    We present a sparse Bayesian unmixing algorithm BusineX: Bayesian Unmixing for Sparse Inference-based Estimation of Fiber Crossings (X), for estimation of white matter fiber parameters from compressed (under-sampled) diffusion MRI (dMRI) data. BusineX combines compressive sensing with linear unmixing and introduces sparsity to the previously proposed multiresolution data fusion algorithm RubiX, resulting in a method for improved reconstruction, especially from data with lower number of diffusion gradients. We formulate the estimation of fiber parameters as a sparse signal recovery problem and propose a linear unmixing framework with sparse Bayesian learning for the recovery of sparse signals, the fiber orientations and volume fractions. The data is modeled using a parametric spherical deconvolution approach and represented using a dictionary created with the exponential decay components along different possible diffusion directions. Volume fractions of fibers along these directions define the dictionary weights. The proposed sparse inference, which is based on the dictionary representation, considers the sparsity of fiber populations and exploits the spatial redundancy in data representation, thereby facilitating inference from under-sampled q-space. The algorithm improves parameter estimation from dMRI through data-dependent local learning of hyperparameters, at each voxel and for each possible fiber orientation, that moderate the strength of priors governing the parameter variances. Experimental results on synthetic and in-vivo data show improved accuracy with a lower uncertainty in fiber parameter estimates. BusineX resolves a higher number of second and third fiber crossings. For under-sampled data, the algorithm is also shown to produce more reliable estimates

    Normalisation of brain connectivity through compensatory behaviour, despite congenital hand absence

    Get PDF
    Previously we showed, using task-evoked fMRI, that compensatory intact hand usage after amputation facilitates remapping of limb representations in the cortical territory of the missing hand (Makin et al., 2013a). Here we show that compensatory arm usage in individuals born without a hand (one-handers) reflects functional connectivity of spontaneous brain activity in the cortical hand region. Compared with two-handed controls, one-handers showed reduced symmetry of hand region inter-hemispheric resting-state functional connectivity and corticospinal white matter microstructure. Nevertheless, those one-handers who more frequently use their residual (handless) arm for typically bimanual daily tasks also showed more symmetrical functional connectivity of the hand region, demonstrating that adaptive behaviour drives long-range brain organisation. We therefore suggest that compensatory arm usage maintains symmetrical sensorimotor functional connectivity in one-handers. Since variability in spontaneous functional connectivity in our study reflects ecological behaviour, we propose that inter-hemispheric symmetry, typically observed in resting sensorimotor networks, depends on coordinated motor behaviour in daily life

    Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images

    Get PDF
    Despite its great potential in studying brain anatomy and structure, diffusion magnetic resonance imaging (dMRI) is marred by artefacts more than any other commonly used MRI technique. In this paper we present a non-parametric framework for detecting and correcting dMRI outliers (signal loss) caused by subject motion.Signal loss (dropout) affecting a whole slice, or a large connected region of a slice, is frequently observed in diffusion weighted images, leading to a set of unusable measurements. This is caused by bulk (subject or physiological) motion during the diffusion encoding part of the imaging sequence. We suggest a method to detect slices affected by signal loss and replace them by a non-parametric prediction, in order to minimise their impact on subsequent analysis. The outlier detection and replacement, as well as correction of other dMRI distortions (susceptibility-induced distortions, eddy currents (EC) and subject motion) are performed within a single framework, allowing the use of an integrated approach for distortion correction. Highly realistic simulations have been used to evaluate the method with respect to its ability to detect outliers (types 1 and 2 errors), the impact of outliers on retrospective correction of movement and distortion and the impact on estimation of commonly used diffusion tensor metrics, such as fractional anisotropy (FA) and mean diffusivity (MD). Data from a large imaging project studying older adults (the Whitehall Imaging sub-study) was used to demonstrate the utility of the method when applied to datasets with severe subject movement.The results indicate high sensitivity and specificity for detecting outliers and that their deleterious effects on FA and MD can be almost completely corrected

    The association between inadequate sleep and accelerated brain ageing

    Get PDF
    Numerous studies indicate large heterogeneity in brain ageing, which can be attributed to modifiable lifestyle factors, including sleep. Inadequate sleep has been previously linked to gray (GM) and white (WM) matter changes. However, the reported findings are highly inconsistent. By contrast to previous research independently characterizing patterns of either GM or WM changes, we used here linked independent component analysis (FLICA) to examine covariation in GM, and WM in a group of older adults (n = 50). Next, we employed a novel technique to estimate the brain age delta (difference between chronological and brain age assessed using neuroimaging data) and study its associations with sleep quality and sleep fragmentation, hypothesizing that inadequate sleep accelerates brain ageing. FLICA revealed a number of multimodal components, associated with age, sleep quality, and sleep fragmentation. Subsequently, we show significant associations between brain age delta and inadequate sleep, suggesting 2 years deviation above the chronological age. Our findings indicate sensitivity of multimodal approaches and brain age delta in detecting link between inadequate sleep and accelerated brain ageing

    How do spatially distinct frequency specific MEG networks emerge from one underlying structural connectome? The role of the structural eigenmodes

    Get PDF
    Functional networks obtained from magnetoencephalography (MEG) from different frequency bands show distinct spatial patterns. It remains to be elucidated how distinct spatial patterns in MEG networks emerge given a single underlying structural network. Recent work has suggested that the eigenmodes of the structural network might serve as a basis set for functional network patterns in the case of functional MRI. Here, we take this notion further in the context of frequency band specific MEG networks. We show that a selected set of eigenmodes of the structural network can predict different frequency band specific networks in the resting state, ranging from delta (1–4 Hz) to the high gamma band (40–70 Hz). These predictions outperform predictions based from surrogate data, suggesting a genuine relationship between eigenmodes of the structural network and frequency specific MEG networks. We then show that the relevant set of eigenmodes can be excited in a network of neural mass models using linear stability analysis only by including delays. Excitation of an eigenmode in this context refers to a dynamic instability of a network steady state to a spatial pattern with a corresponding coherent temporal oscillation. Simulations verify the results from linear stability analysis and suggest that theta, alpha and beta band networks emerge very near to the bifurcation. The delta and gamma bands in the resting state emerges further away from the bifurcation. These results show for the first time how delayed interactions can excite the relevant set of eigenmodes that give rise to frequency specific functional connectivity patterns

    Right fronto-parietal networks mediate the neurocognitive benefits of enriched environments

    Get PDF
    Exposure to enriched environments throughout a lifetime, providing so called reserve, protects against cognitive decline in later years. It has been hypothesised that high levels of alertness necessitated by enriched environments might strengthen the right fronto-parietal networks to facilitate this neurocognitive resilience. We have previously shown that enriched environments offset age-related deficits in selective attention by preserving grey matter within right fronto-parietal regions. Here, using neurite orientation dispersion and density imaging, we examined the relationship between enriched environments, microstructural properties of fronto-parietal white matter association pathways (three branches of the superior longitudinal fasciculus), structural brain health (atrophy), and attention (alertness, orienting and executive control) in a group of older adults. We show that exposure to enriched environments is associated with a lower orientation dispersion index within the right superior longitudinal fasciculus 1 which in turn mediates the relationship between enriched environments and alertness, as well as grey- and white-matter atrophy. This suggests that enriched environments may induce white matter plasticity (and prevent age-related dispersion of axons) within the right fronto-parietal networks to facilitate the preservation of neurocognitive health in later years

    High resolution whole brain diffusion imaging at 7 T for the Human Connectome Project

    Get PDF
    Mapping structural connectivity in healthy adults for the Human Connectome Project (HCP) benefits from high quality, high resolution, multiband (MB)-accelerated whole brain diffusion MRI (dMRI). Acquiring such data at ultrahigh fields (7 T and above) can improve intrinsic signal-to-noise ratio (SNR), but suffers from shorter T2 and T2⁎ relaxation times, increased B1+ inhomogeneity (resulting in signal loss in cerebellar and temporal lobe regions), and increased power deposition (i.e. specific absorption rate (SAR)), thereby limiting our ability to reduce the repetition time (TR). Here, we present recent developments and optimizations in 7 T image acquisitions for the HCP that allow us to efficiently obtain high quality, high resolution whole brain in-vivo dMRI data at 7 T. These data show spatial details typically seen only in ex-vivo studies and complement already very high quality 3 T HCP data in the same subjects. The advances are the result of intensive pilot studies aimed at mitigating the limitations of dMRI at 7 T. The data quality and methods described here are representative of the datasets that will be made freely available to the community in 2015

    Bayesian optimization of large-scale biophysical networks

    Get PDF
    The relationship between structure and function in the human brain is well established, but not yet well characterised. Large-scale biophysical models allow us to investigate this relationship, by leveraging structural information (e.g. derived from diffusion tractography) in order to couple dynamical models of local neuronal activity into networks of interacting regions distributed across the cortex. In practice however, these models are difficult to parametrise, and their simulation is often delicate and computationally expensive. This undermines the experimental aspect of scientific modelling, and stands in the way of comparing different parametrisations, network architectures, or models in general, with confidence. Here, we advocate the use of Bayesian optimisation for assessing the capabilities of biophysical network models, given a set of desired properties (e.g. band-specific functional connectivity); and in turn the use of this assessment as a principled basis for incremental modelling and model comparison. We adapt an optimisation method designed to cope with costly, high-dimensional, non-convex problems, and demonstrate its use and effectiveness. Using five parameters controlling key aspects of our model, we find that this method is able to converge to regions of high functional similarity with real MEG data, with very few samples given the number of parameters, without getting stuck in local extrema, and while building and exploiting a map of uncertainty defined smoothly across the parameter space. We compare the results obtained using different methods of structural connectivity estimation from diffusion tractography, and find that one method leads to better simulations
    • 

    corecore