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Abstract

Diffusion-weighted (DW) magnetic resonance imaging allows the quantification of wa-

ter diffusion within tissue. Due to the hindrance of water molecules by the various

tissue compartments, probing for the diffusive properties of a region can provide in-

formation on the underlying structure. This is particularly useful for the human brain,

whose anatomy is complex. Diffusion imaging provides currently the only tool to

study the brain connectivity and organization non-invasively and in-vivo, through a

group of methods, commonly referred to as tractography methods.

This thesis is concerned with brain anatomical connectivity and tractography. The

goal is to elucidate problems with existing approaches used to process DW images and

propose solutions and methods through new frameworks. These concern data from

two popular DW imaging protocols, diffusion tensor imaging (DTI) and high angu-

lar resolution diffusion imaging (HARDI), or Q-ball imaging in particular. One of the

problems tackled is resolving crossing fibre configurations, a major concern in DW

imaging, using data that can be routinely acquired in a clinical setting. The physical

constraint of spatial continuity of the diffusion environment is imposed throughout

the brain volume, using a multi-tensor model and a regularization method. The new

approach is shown to improve tractography results through crossing regions. Quan-

titative tractography algorithms are also proposed that, apart from reconstructing the

white matter tracts, assign relative indices of anatomical connectivity to all regions. A

fuzzy algorithm is presented for assessing orientational coherence of neuronal tracts,

reflecting the fuzzy nature of medical images. As shown for different tracts, where

a-priori anatomical knowledge exists, regions that are coherently connected and pos-

sibly belong to the same tract can be differentiated from the background. In a dif-

ferent framework, elements of graph theory are used to develop a new tractography

algorithm that can utilize information from multiple image modalities to assess brain

connectivity. Both algorithms inherently consider crossing fibre information and are

shown to solve problems that affect existing methods.
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1
Introduction

The human brain has been described as "one of the most complex systems in the universe"

(Koch and Laurent, 1999). It is a network of more than 1011 individual nerve cells and

1016 interconnections (Kandel et al., 2000). Due to the brain’s complexity, many aspects

of its function remain uncertain. According to the concept of "structure defining func-

tion" (Buzsaki, 2006), the safest way to start speculating about the brain’s function is

to inspect its anatomical organization and understand the underlying circuitry. The

pattern of structural connections can be used to place specific constraints on brain dy-

namics and help to identify causal interactions in brain networks (Sporns et al., 2005).

Towards this direction, brain anatomy has been studied for over a century now

(Dejerine and Dejerine-Klumpke, 1895; Gray, 1918). Neural tracers and histology, for

instance (LaVail and LaVail, 1972), allowed neuroanatomical studies, but their invasive

nature has limited their application to animal or post-mortem human brains (Brod-

mann, 1909; Dejerine and Dejerine-Klumpke, 1895). Dissections (Ludwig and Klingler,

1956) offered another alternative to study anatomy (Haines, 2004; Williams et al., 1997),

but still in post-mortem tissue. The development of imaging techniques and of mag-

netic resonance imaging (MRI) (Lauterbur, 1973; Mansfield and Maudsley, 1977), in
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particular, has allowed the study of brain structure in living humans. Due to the lim-

ited spatial resolution of these techniques, neuroscience and neurology questions can

be tackled at a systems level and on a macroscopic scale. Diffusion-weighted MRI is

one of these methods and will be the subject of this thesis.

Diffusion-weighted MRI (DW-MRI) was first applied to living humans in 1986 by

Le Bihan et al (Le Bihan et al., 1986). Since then, there has been a lot of research on

the field and great potential has been revealed. The underlying concept of the method

is that the phenomenon of diffusion of water molecules within tissue is utilized to in-

troduce contrast to images. Diffusion is an intrinsic molecular transport process that

induces thermally-driven random motions. But what anatomical information can we

infer using DW-MRI?

At the microscopic scale, each neuronal cell comprises of three main parts, the den-

drites, the cell body (soma) and the axon (Kandel et al., 2000). These processes grossly

correspond to the input, processing and output units of a cell. At a macroscopic scale,

cell bodies and dendrites of millions of neurons tend to cluster together to constitute

what is known as the grey matter of the brain (Kandel et al., 2000). Axons, which can be

very long, also cluster together to form axonal bundles and constitute the white matter.

Axonal bundles, also known as fasciculi or tracts, appear to have a very fibrous and

coherent structure in a brain dissection (Fig. 1.1) and therefore axons are also called

fibres.

Figure 1.1: The �brous structure of brain white matter, as shown in post-mortem
dissections. Figure adapted from (Williams et al., 1997).

White matter tracts are the wires of the brain. They transmit information between
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different brain regions and define the direct interconnections between nodes of the

brain network. DW-MRI is currently the only tool that allows study and reconstruc-

tion of these tracts, non-invasively and in-vivo, via a process known as tractography

(Basser et al., 2000; Mori et al., 1999, 2005). The assumption that is made in DW-MRI

is that the observed hindrance of water diffusive motions is connected to the under-

lying tissue structure. Within tissue, diffusing water molecules are hindered by the

various microstructures, such as cell membranes, axons and myelin sheaths that act as

barriers to motion. When tissue structural coherence exists, this hindrance is system-

atic and leads to a measurable preferred diffusion orientation. As shown in the simple

sketches of Fig. 1.2, in grey matter, diffusion will be more restricted compared to a

barrier-free medium, however no particular orientational preference will be exhibited.

On the contrary, white matter exhibits structural coherence and water molecules will

diffuse along rather than across the fibres (Beaulieu, 2002). Therefore, the dominant dif-

fusion orientation in white matter is assumed to give an estimate of the orientation of

the underlying neuronal bundles. Utilizing these orientations across the whole brain,

tractography can be performed (Basser et al., 2000; Mori et al., 1999).

Figure 1.2: Sketch of barrier-free di�usion and di�usion in grey (GM) and white
matter (WM). The trajectories of three di�using molecules are shown. Cell bodies
are represented as spheres and axons as cylinders.

Reconstruction of white matter tracts is important for tackling neuroscience/ neu-

roanatomy questions (Hagmann et al., 2008; van den Heuvel et al., 2009). A map of

structural connections, obtained in-vivo, can be used to impose constraints on the anal-

ysis of functional connectivity maps. The latter, estimated for instance using electroen-

cephalography (EEG) or functional MRI (fMRI), are only available for living subjects
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and DW-MRI allows their integration with structural information of the same subject

to provide insight into different aspects of brain’s function.

Tractography is also important for studying neurological disorders (Ciccarelli et al.,

2008). Norman Geschwind argued in 1965 that interruption of normal white matter

connections is likely to lead to a range of impairments (Geschwind, 1965a,b). This

disconnection hypothesis suggested that different diseases may affect different tracts.

Localization of specific white matter tracts and study of structural changes along the

bundles can provide insight to the disease mechanisms and aetiology, as well as offer

additional diagnostic information. The potential of tractography to detect pathology-

induced changes along specific bundles has been illustrated in many studies (Ciccarelli

et al., 2008). Neurosurgical planning has also benefited from DW-MRI (Clark et al.,

2003), since mapping intact white matter pathways can assist the surgeon to decide the

best strategy and avoid resecting clinically eloquent tissue.

Despite the great potential, white matter tractography is relatively immature. This

thesis aims to take steps for improving existing tractography methods. Many of the

approaches that will be described in the background sections were developed simulta-

neously with the work presented here. The goal of this thesis was to elucidate prob-

lems with existing algorithms and propose solutions through new frameworks. One

of the problems tackled is resolving crossing fibre configurations, a main concern in

DW imaging, using, though, data that can be routinely acquired in a clinical setting.

Quantitative tractography algorithms are also proposed that, apart from reconstruct-

ing the white matter tracts, assign to connected regions relative indices of connectivity.

These algorithms inherently consider crossing fibre information and solve problems

that existing methods have.

1.1 Organization of the thesis

This thesis is organized in seven chapters. The first three give an overview of existing

methods in diffusion-weighted (DW) imaging and techniques to post-process these

data in order to reconstruct white matter tracts. The next three chapters present the

methodological contributions of this thesis. Each of the proposed methods are applied

to human brain DW images and compared with other techniques in the literature. The

5



CHAPTER 1: INTRODUCTION

last chapter summarizes the results.

Chapter 2 describes diffusion as a molecular transport process and presents the

simplest nuclear magnetic resonance (NMR) experiment for weighting the measured

signal by the random diffusive motions of water molecules. The q-space formalism

is explained for estimating the diffusion profile from diffusion-weighted (DW) NMR

measurements. The commonly used diffusion tensor imaging (DTI) is then derived from

the q-space relation and presented. Finally, a brief description of acquisition protocols

for sampling q-space is given. Spherical, Cartesian and hybrid protocols are discussed.

Chapter 3 gives an overview of methods that tackle a major problem in diffusion

imaging, which is resolving crossing fibre configurations from DW data. What happens

when two (or more) distinct fibre tracts cross within an imaging voxel? The diffu-

sion profile becomes complex as there are contributions from different compartments.

Model-based and model-free techniques that try to resolve such complex profiles are

reviewed. These range from multi-tensor models, methods that resolve a spherical fea-

ture of the diffusion profile (orientation distribution functions and persistent angular

structure for instance), spherical deconvolution approaches and q-space methods.

Chapter 4 illustrates how the resolved diffusion profile can be utilized to recon-

struct white matter tracts, a process known as white matter tractography. Different meth-

ods are presented ranging from curve propagation techniques to front evolution and

diffusion simulation approaches. Non-quantitative and quantitative methods are pre-

sented, the former providing white matter tracts only and the latter estimating an index

of "connectivity", which characterizes how plausible a putative tract is, given the data.

A further subdivision is performed between local and global approaches. Local ap-

proaches reconstruct tracts by using the diffusion profile of a voxel, in a greedy way,

to propagate to subsequent voxels. Global methods consider a feature along the whole

path and look for candidate tracts that are optimum according to this feature.

Chapter 5 presents a new method for better resolving crossing fibre configurations

from conventional diffusion-weighted images. Diffusion scans performed routinely in

a clinical setting must be acquired within a short time frame and therefore provide a

very sparse sampling of q-space within each voxel. If one is interested in resolving fibre

crossings, utilization of advanced techniques is problematic, due to the small number

of acquired samples. To overcome this difficulty, a spatial regularization method is in-
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troduced to counterbalance the sparse intra-voxel sampling with information obtained

from neighbouring voxels. The physical constraint of diffusion continuity across neigh-

bouring voxels is imposed using relaxation labelling, an iterative method, on the esti-

mates of a simplified two-tensor model. The regularized approach is shown to reliably

resolve crossing configurations in regions where a priori anatomical knowledge exists.

Tractography results verify the improved performance compared to other methods.

Chapter 6 presents a new tractography approach based on a fuzzy framework. Med-

ical images are by nature fuzzy, due to various factors, for instance noise artefacts,

hardware limitations and limited spatial resolution. A fuzzy algorithm is therefore

described to reconstruct white matter tracts. Fuzzy transition weights are defined be-

tween neighbouring voxels and tracts are reconstructed on the discrete image grid. The

proposed method is a global tractography approach that assigns to each voxel a relative

connectivity value, representative of the weakest link of the best path connecting it to

a predefined seed. It is distributed in the sense that all image voxels are assigned a rel-

ative connectivity value. The algorithm considers any number of fibre compartments

coexisting in a voxel, thus allowing the incorporation of fibre crossing information. Re-

sults are presented for many known white matter tracts that have been successfully

reconstructed.

Chapter 7 describes a novel and flexible method to perform tractography using

graph theory. Building on the framework of the previous chapter, a multigraph rep-

resentation of the image is generated. To achieve that, a Q-ball reconstruction of the

data is performed along with fitting multi-tensor models. Tracts are then reconstructed

using information from different imaging modalities; diffusion information derived

from DW images and structural information from anatomical images. The multigraph-

based tractography is compared with three other methods to show its advantages. It

utilizes fibre crossing information and propagates robustly through crossing regions.

To illustrate its potential, connectivity-based parcellation of the thalamus is performed.

Chapter 8 summarizes the results presented in chapters 5-7 and discusses future

perspectives.
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1.2 Software

The new algorithms and methods presented in this thesis were implemented using

the C programming language (Kernighan and Ritchie, 1988). For visualization of the

results, Matlab 7.4 (The Mathworks, MA, USA) and Paraview 3.6 (http://www.para-

view.org) were used. UCL’s diffusion MRI toolkit - Camino 2 (Cook et al., 2006) was

used to perform deterministic and probabilistic streamline tractography, while Ox-

ford’s software library - FSL 4.1 (Smith et al., 2004) was utilized to perform brain ex-

traction and image registration.
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2
Diffusion MR Imaging

2.1 Self-Diffusion of water molecules

Diffusion is a molecular transport process that involves thermally-driven random mo-

tions (Hobbie, 1997). This process, occuring constantly at non-zero ambient absolute

temperatures, was first discovered in 1827 by Robert Brown and is also known as Brow-

nian motion. The random diffusion displacements in an ensemble of molecules can

be described using the Einstein relation. In a homogeneous, barrier-free medium, pro-

vided that the number of molecules is sufficiently large, the squared diffusion displace-

ments r, averaged over all the molecules in the ensemble, is directly proportional to the

observation time τ. In n dimensional space:

〈

r2
〉

= 2nDτ, n = 1, 2, 3 (2.1)

with
〈

r2
〉

the mean squared displacement. The above can be seen as a Gaussian pro-

cess with zero mean displacement and variance σ2 ∝ Dτ. The scalar proportionality

constant D is known as the diffusion coefficient and depends on the medium viscosity,
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the particle size and the temperature (Hobbie, 1997). When both the diffusing particles

and the medium in which they diffuse are of the same species, the process is called

self-diffusion and D the self-diffusion coefficient. At body temperature (37o C), the

self-diffusion coefficient of water is 3× 10−3 mm2/s (Jones, 2009).

The diffusion process can be also described by Fick’s laws (Hobbie, 1997). Fick’s

first law states that diffusion appears macroscopically as a net flux from regions of high

particle concentration C to regions of low concentration. The second law is of particular

interest as it describes the spatio-temporal dynamics of diffusion. Also known as the

Heat equation or the Diffusion equation, it states that in a homogeneous medium:

dC

dt
= D · ∇2C . (2.2)

For self-diffusion, the concentration C can be replaced by the conditional proba-

bility density function P(r, τ) (Callaghan, 1991) that describes the average probability

for any particle in an ensemble having a relative diffusion displacement r after time

τ. Assuming a barrier-free medium and that all particles are concentrated at the same

location at time τ = 0, the solution of the diffusion equation gives a trivariate Gaussian

distribution (Callaghan, 1991) with zero mean and variance σ2 = 2Dτ in each direction,

similar to the predictions of Einstein’s relation:

P(r, τ) =
1

√

(4πDτ)3
· exp

( −r2

4Dτ

)

=
1

√

(4πDτ)3
· exp

(−rT · r · D−1

4τ

)

. (2.3)

2.2 Pulsed gradient spin echo and Q-space

Diffusion-weighted (DW) MR imaging is sensitive to the self-diffusion of water molecu-

les within tissues. It can indirectly provide structural tissue information, by allowing

estimation of the water diffusion profile in different tissue regions. A way to introduce

diffusion-weighting to MR sequences along with the q-space formalism (Callaghan,

1991) are explained in this section.

Let a spin (hydrogen proton), at time t=0, be at location xo. The diffusion pro-

file of this spin can be described by a conditional probability density function (pdf)

Ps(x|xo, τ). For a single spin, this pdf gives the probability of diffusion from xo to
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x in time τ. As mentioned before, for an ensemble of spins, we can define a pdf

P(r, τ) = P(−r, τ) =
∫

Ps(xo + r|xo, τ) · ρ(xo)dxo, with ρ giving the spin density at

a specific location and r being the relative spin displacement (Callaghan, 1991). The

function P gives the average probability for any particle in the ensemble to have a dif-

fusion displacement r and is encountered in the literature under various names, such

as the diffusion propagator, the diffusion spectrum or the diffusion scatter pattern.

Figure 2.1: Pulsed gradient spin echo experiment used to introduce di�usion-
weighting to MR measurements.

In the q-space formalism (Callaghan, 1991), P can be calculated as the Fourier

transform of diffusion-weighted MR measurements. Diffusion-weighting along a given

direction is commonly achieved using the pulsed gradient spin echo (PGSE) sequence

introduced by Stejskal and Tanner (Stejskal and Tanner, 1965). PGSE is a modified

spin echo experiment that utilizes diffusion-sensitizing magnetic field gradients ap-

plied along the direction of interest (Fig. (2.1)). Let G(t)=[Gx(t) Gy(t) Gz(t)]T such a

gradient and γ the gyromagnetic ratio (for protons γ=42.576 MHz/T). Then, a spin lo-

cated at position x along the direction of G will experience a Larmor frequency offset

ωG(x, t) = γ · x ·G(t) (Haacke et al., 1999). Thus, the accumulated phase during the

gradient application will be:

φG(x) = −
∞
∫

0

ωG(x, t)dt = −γ · x ·
∞
∫

0

G(t)dt . (2.4)
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Let q the vector

q = γ

∞
∫

0

G(t)dt , (2.5)

which has the same orientation as the gradient vector G (in the case of a constant gradi-

ent of duration δ, the q vector reduces to q = γGδ). Then, the phase acquired by a spin

at location x will be -q·x, according to Eq. (2.4) and (2.5). During the PGSE experiment,

two identical gradients are applied on either side of a 180o RF pulse, as shown in Fig.

2.1. If the gradients are short enough (δ ≪ ∆) so that no diffusion displacements take

place during their duration, a spin at location xo will acquire a phase−q · xo during the

application of the first gradient. If the spin is at location x1 during the application of

the second gradient, it will acquire a phase −q · x1. The 180o pulse reverses the phase

change that occured prior to its application, i.e. the one induced by the first gradient.

Therefore, the net phase for this spin will be −q · (x1 − xo) = −q · r, r being the dis-

placement of the spin position between times 0 and ∆. In the case of a stationary spin,

the two phases cancel each other and complete rephasing occurs. If, however, a parti-

cle moves during the inter-gradient interval, then a phase will be acquired. Different

random displacements r by different particles will lead to phase dispersion and an at-

tenuation of the observed signal S(q,τ) will be observed, compared to the signal S(0)

that would be obtained without the application of diffusion-sensitizing gradients.

The measured signal attenuation E(q,τ)=S(q,τ)/S(0) can be obtained by integrat-

ing over the induced phases obtained by all possible diffusion displacements across an

ensemble of spins and weighting the displacements by the diffusion propagator P. A

Fourier transform between E and P results (Callaghan, 1991):

E(q, τ) =
∫

P(r, τ) · e−iq·rdr = F [P(r, τ)] . (2.6)

Using this Fourier relationship the pdf P can be estimated from q-space measure-

ments. The wavevector q and the diffusion displacement r define a Fourier pair, just as

the k vector and the spatial location R in MR imaging. Remember that for an imaging

gradient Gi(t), the k vector and the signal S are (Haacke et al., 1999):

k =
1

2π
γ

∞
∫

0

Gi(t)dt and S(k) =
∫

ρ(R) · e−i2πk·RdR .
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Therefore, q and r are reciprocal in the sense that measurements at high "frequencies"

q will be more sensitive to subtle diffusion displacements, while low q-value measure-

ments capture larger and coarser displacements (Basser, 2002). In (Wedeen et al., 2005)

it is further proved that the diffusion MR signal is real and positive. This means that

F [E(q)] = F [|E(q)|], i.e. only the modulus of the measurements is necessary to com-

pute the diffusion propagator:

|E(q, τ)| =
∫

P(r, τ) · e−iq·rdr = F [P(r, τ)] . (2.7)

The derivation of the Fourier transform of Eq. (2.6) assumes that the width of

the diffusion-sensitizing gradients is negligible compared to the diffusion time of in-

terest (i.e. δ ≪ τ and ∆ ≈ τ). In practice, this narrow pulse approximation is not

valid, as δ and ∆ are of a similar magnitude. Under certain assumptions, the effects of

the non-negligible δ can be modelled (a discussion is included in (Alexander, 2006)).

For example, assuming a Gaussian diffusion propagator and rectangular gradients, the

non-negligible δ reduces the effective diffusion time to τ = ∆− δ/3 (Stejskal and Tan-

ner, 1965). In (Mitra and Halperin, 1995), it is further shown that the Fourier transform

between the measured signal and the diffusion propagator still holds for a modified

interpretation of the displacement vector r. The vector r can be considered as the dis-

placement of the mean spin position within the period [0, δ] relative to the mean spin

position within [∆, δ + ∆].

2.3 Diffusion imaging and Diffusion tensor imaging

The simplest diffusion imaging experiment assumes free diffusion and a homogeneous

diffusion coefficient D in each voxel. Then, using the q-space relationship and the

Gaussian diffusion propagator described in Eq. (2.3), the signal obtained from a PGSE

experiment follows the equation:

S(q, τ) = S(0) · exp(− |q|2 Dτ) . (2.8)

This expression was obtained by Stejskal and Tanner (Stejskal and Tanner, 1965),
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who found that S(q, τ) = S(0) · exp(−bD). The value b = τ |q|2 effectively deter-

mines the amount of diffusion weighting applied during acquisition. For rectangular

gradients of finite duration δ and under the assumption of Gaussian diffusion, the ef-

fective diffusion time reduces to τ = ∆ − δ/3, as mentioned in the previous section.

Then q = γGδ gives b = γ2G2δ2(∆ − δ/3). Le Bihan et al (Le Bihan et al., 1986) in-

corporated the PGSE experiment within an MRI sequence to obtain for the first time

in 1986 diffusion-weighted images of the human brain. A single diffusion coefficient

was then estimated in each image voxel using Eq. (2.8). As pointed out in (Le Bihan

et al., 1986), these coefficients do not purely reflect free diffusion and are thus smaller

than the theoretical self-diffusion coefficient of water. Diffusion in the brain is hindered

by the various tissue compartments. If enough diffusion time is allowed, particles will

hit the boundaries and diffuse less than expected in a free medium. Furthermore, any

type of incoherent motion that can cause spin dephasing during the application of the

gradients will contribute to the measured echo attenuation. These include, apart from

diffusion, microcirculation in the capillary network and fluids flowing with several

velocities within tissue. For all these reasons, the estimated quantities were termed

aparent diffusion coefficients (ADCs).

Bulk motions, such as cardiac cycle pulsations and involuntary head movements,

can also be mistakenly perceived as diffusion and contribute to the measured signal.

To reduce sensitivity to bulk motions, DW echo-planar imaging (EPI) was introduced

by Turner et al (Turner et al., 1990). With single-shot EPI an entire image is captured in

less than 0.1 seconds and motion artefacts are reduced.

The assumption of isotropic behaviour of the diffusion coefficient is utilized in DW

imaging. However, this is not always the case for brain tissue. Fig. 2.2 shows DW im-

ages of the same brain region when gradients with identical magnitude but different

direction are applied. The signal attenuation in certain regions varies significantly with

gradient direction and this anisotropic behaviour will be reflected in the estimated co-

efficients. More specifically, anisotropic diffusion is encountered in regions with coher-

ent tissue structure, such as brain white matter (WM) (Beaulieu, 2002). In these regions,

diffusion displacements are on average larger along a certain "preferred" orientation.

Water molecules, hindered by the axonal membranes and the myelin sheaths, diffuse

along rather than across neuronal axons. For regions with no tissue structure, such as
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CSF-filled areas, or regions with random structure, such as brain grey matter (GM) the

assumption of isotropy seems more appropriate, i.e. displacements are expected to be

of the same magnitude along any orientation.

Figure 2.2: Single-shot EPI di�usion-weighted images acquired with gradients
applied along three di�erent orientations (anterior-posterior, left-right, superior-
inferior). An EPI image without di�usion-weighting is shown on the left. To aid
visualization, the dynamic range of the non-DW image is di�erent, therefore the
signal attenuation is not obvious in all regions.

Diffusion Tensor Imaging

To capture potential anisotropic diffusion, diffusion tensor imaging (DTI) has been in-

troduced (Basser et al., 1994a). In DTI, the diffusion propagator is assumed to be a

zero-mean tri-variate Gaussian function (Basser et al., 1994b):

P(r, τ) =
1

√

(4πτ)3|D|
· exp

(−rT · D−1 · r
4τ

)

, (2.9)

with a covariance matrix Σ = 2τD and D called the diffusion tensor. This is a gener-

alization of the diffusion propagator of Eq. (2.3) obtained for a barrier-free medium,

however with the assumption of medium homogeneity removed. Thus, instead of a

single diffusion coefficient D in all dimensions, different coefficients are allowed along

different directions. This is reflected in the diffusion tensor D, which is a 3x3 symmet-

ric, positive definite matrix:
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D =











Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz











.

Using the q-space relationship of Eq. (2.6), the DTI model for the signal attenuation

(Basser et al., 1994a) can be obtained. We need to use the following Fourier transform

pair, according to which the Fourier of a multivariate Gaussian function with zero mean

and covariance Σ is also a multivariate Gaussian with zero mean and covariance Σ−1

(Pollard, 2001):

1
√

(2π)3|Σ|
· exp

(−rT · Σ−1 · r
2

)

F←→ exp

(−qT · Σ · q
2

)

.

Then, if g is a unit vector such that q = |q| g and b = τ |q|2 as before, the diffusion MR

signal will be:

E(q, τ) = exp(−τ · qT · D · q) =⇒ E(g, τ) = exp(−b · gT · D · g) =⇒

S(g, τ) = S(0) · exp(−b · gT · D · g) . (2.10)

As in DW imaging, for rectangular magnetic field gradients G of duration δ, the ef-

fective diffusion time is τ = ∆ − δ/3 (Basser et al., 1994a) and the b value is b =

γ2G2δ2(∆− δ/3).

Using the above equation, the tensor D can be estimated from the diffusion mea-

surements S. Having 6 unknowns, at least 6 unique DW measurements are needed to

determine D, provided that S(0) is measured. Keeping the scalar b constant at a high

value (around 1000 s/mm2) (Jones et al., 1999) and changing the direction of the diffu-

sion gradients (i.e. sampling a sphere with constant radius in q-space) will give the re-

quired measurements. To improve immunity against noise, more than 6 non-collinear

directions (usually 15-30) are utilized (Jones, 2004). To reduce any noise bias and keep

the statistical properties of the calculated parameters as rotationally invariant as possi-

ble, the sampling directions should be evenly distributed on the sphere (Hasan et al.,

2001; Jones, 2004). Having a set of DW images, the diffusion tensor can be estimated

by performing multivariate regression on Eq. (2.10) (Basser et al., 1994a).
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Linear estimation of the diffusion tensor

Given M DW measurements per voxel, we need to estimate the 6 unknown elements

of the diffusion tensor D. According to the DTI model, for k = 1...M:

S(gk, τ) ≡ Sk = S(0) · exp(−b · gT
k · D · gk) =⇒

Ck ≡ −ln

(

Sk

S(0)

)

= bgT
k · D · gk =⇒

Ck = bg2
k1Dxx + bg2

k2Dyy + bg2
k3Dzz + 2bgk1gk2Dxy + 2bgk1gk3Dxz + 2bgk2gk3Dyz .

This is a system of M linear equations with 6 unknowns, the elements of the sym-

metric diffusion tensor. In matrix form, this can be written as:

















C1

C2

...

CM

















=

















bg2
11 bg2

12 bg2
13 2bg11g12 2bg11g13 2bg12g13

bg2
21 bg2

22 bg2
23 2bg21g22 2bg21g23 2bg22g23

...
...

...
...

. . .
...

bg2
M1 bg2

M2 bg2
M3 2bgM1gM2 2bgM1gM3 2bgM2gM3

















·





























Dxx

Dyy

Dzz

Dxy

Dxz

Dyz





























=⇒ C = A · X .

The solution to this system for M>6 is (Press et al., 1992):

X = (AT ·A)−1AT ·C (2.11)

and is known as the ordinary least squares (OLS) estimate. The assumption of this ap-

proach is that noise is zero-mean Gaussian and that all measurements have the same

noise variance. For fitting to the diffusion-weighted signal Sk, this is a reasonable as-

sumption, unless the signal to noise ratio (SNR) is very low (Pajevic and Basser, 2003).

However, the model is fitted to the logarithm of the signal Ck. The logarithmic transfor-

mation increases the variance of small measurements (note that as x → 0, lnx → −∞

rapidly) relative to the variance of large measurements. As suggested by (Salvador

et al., 2005), noise for the logarithm of the measurements follows approximately a zero-

mean Gaussian distribution, for SNR>3. However, the variance across measurements
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differs, with the logarithm of the Sk measurement having a variance inversely propor-

tional to S2
k .

Therefore, a more appropriate approach would be weighted least squares (WLS)

(Basser et al., 1994a; Kingsley, 2006b). Each equation of the above linear system is

weighted by a number representative of the reciprocal variance of the corresponding

measurement. Thus, measurements with a large variance will have a lower impact in

the estimation process. The WLS solution is:

W ·C = W ·A · X =⇒ X = (AT ·W ·A)−1AT ·W ·C . (2.12)

W is a M × M diagonal matrix with element wkk the weight corresponding to the kth

measurement. Due to the logarithmic transformation, a good choice for the weights is

wkk ∝ S2
k (Salvador et al., 2005). It should be pointed out that scaling all the weights

with the same number will not make any difference in the estimates.

Diffusion tensor properties

OnceD is determined, its diagonal elements represent ADCs along the three laboratory

coordinate directions (slice selection, readout, phase encoding direction), while the off-

diagonal elements represent the correlation of displacements along these coordinate

directions (Pierpaoli et al., 1996). However, the ADCs along the directions of a local

coordinate system, determined by the tissue anatomy and structure, are of interest.

Therefore, the diffusion tensor is commonly diagonalized (Press et al., 1992) and its

eigenvalues λ1, λ2, λ3 and eigenvectors e1, e2, e3 are calculated (Kingsley, 2006b). The

eigen-decomposition of the diffusion tensor is:

D = [e1|e2|e3]











λ1 0 0

0 λ2 0

0 0 λ3











[e1|e2|e3]
T = λ1e1eT

1 + λ2e2eT
2 + λ3e3eT

3 . (2.13)

The eigenvalues of the diffusion tensor provide diffusion coefficients along the ori-

entations defined by its respective eigenvectors (Pierpaoli et al., 1996). A common rep-

resentation of iso-probability surfaces of the Gaussian diffusion propagator estimated
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by DTI is the diffusion ellipsoid (Basser, 1995), with axes along the three eigenvectors ei

and magnitude equal to the respective root mean square (rms) diffusion displacements
√

2τλi. The shape of the ellipsoid reveals the anisotropy degree of the tensor, as shown

in Fig. 2.3. For anisotropic ellipsoids found in WM, the principal eigenvector e1, i.e.

the one associated with the largest eigenvalue λ1, has been found to coincide with the

principal fibre orientation of the underlying tissue structure (Pierpaoli et al., 1996).

Figure 2.3: DTI ellipsoids for an isotropic (left) and an anisotropic (right) tensor.

While the diffusion ellipsoid effectively plots the rms diffusion displacements, the

ADC profile (Basser, 1995) is an angular plot of the diffusion coefficients that one would

measure along different directions, given a tensor D. The ADC value along any arbi-

trary direction g is:

ADCg = gT · D · g = λ1(g · e1)
2 + λ2(g · e2)

2 + λ3(g · e3)
2 . (2.14)

Note that the above expression is equal to −ln[S(g, τ)/S(0)]/b. Plotting these values

along many directions on the sphere will give the ADC profile, also known as an ADC

peanut, due to its shape in highly anisotropic regions.

A number of scalar rotationally invariant parameters can be extracted from the

diffusion tensor. The Mean Diffusivity (MD) can be obtained as the mean of the ten-

sor’s eigenvalues or in general as the average sum of three ADCs measured in three
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orthogonal directions (Basser, 1995):

MD =
Dxx + Dyy + Dzz

3
=

λ1 + λ2 + λ3

3
. (2.15)

The Fractional Anisotropy (FA) is the most commonly used anisotropy measure

and is a normalized expression of the variance of the tensor eigenvalues (Basser, 1995).

It is 0 for perfectly isotropic (λ1 = λ2 = λ3) and 1 for perfectly anisotropic tensors

(λ1 6= 0, λ2 = λ3 = 0):

FA =

√

√

√

√

√

√

√

√

√

3
3

∑
i=1

(λi − λ)2

2
3

∑
i=1

λ2
i

. (2.16)

Figure 2.4: Di�usion tensor derived images, including the mean di�usivity, the frac-
tional anisotropy and the principal tensor eigenvector. The latter is colour-coded
by orientation. As shown by the coloured sphere, superior-inferior (S-I) orientation
corresponds to blue, anterior-posterior (A-P) to green and medial-lateral (M-L) to
red.

Axial slices of the MD and FA maps are shown in Fig. 2.4. The mean diffusivity is

relatively constant within the brain parenchyma at 0.7x10−3 mm2/s. Interestingly, this

value remains roughly the same across human subjects and also across a range of other

mammalian brains (Basser and Jones, 2002). The FA values are high for white matter

and low for grey matter and CSF-filled regions. A colour-coded image of the principal
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fibre orientation (i.e. principal tensor eigenvector) (Pajevic and Pierpaoli, 1999) is also

presented. Colours are scaled by the FA, so that low anisotropy regions are suppressed.

We can observe familiar orientations for some known tracts, such as inferior-superior

orientation within the corona radiata and medial-lateral orientation for the corpus cal-

losum.

2.4 Sampling Q-space

As explained in the previous section, DTI assumes a Gaussian model for the diffusion

propagator. Therefore, only a small number of q-space measurements are needed to

estimate the diffusion tensor. A spherical acquisition scheme is commonly applied in

DTI, typically consisting of 6-30 samples on a q-space sphere. The magnitude |q| is kept

constant, while the direction of the applied diffusion-sensitizing gradients is varied.

For certain applications, more measurements are needed on a q-space sphere (at

least 60, for instance). Such spherical schemes were termed, by Tuch et al (Tuch et al.,

2002), high angular resolution diffusion imaging (HARDI) protocols. HARDI is used,

for example, in Q-ball imaging (Tuch, 2004) and PAS-MRI (Jansons and Alexander,

2003), where features of the diffusion propagator P are of interest rather than P itself.

HARDI-based methods will be described in detail in the next chapter.

When the diffusion propagator P needs to be estimated in a model-free way, with-

out imposing any assumptions on it, the q-space relation can be utilized (Eq. (2.6)).

This is the underlying idea of q-space imaging (Assaf et al., 2002) and diffusion spec-

trum imaging (Wedeen et al., 2005) that sample the q-space and estimate the diffusion

propagator via a Fourier transform. Assaf et al have performed one-dimensional q-

space imaging in healthy subjects and patients (Assaf et al., 2002) to obtain the diffu-

sion propagator along a given direction. Measurements were acquired along a line in

q-space by varying the gradient strength |G|. Generalizing to 3D, diffusion spectrum

imaging (DSI) (Wedeen et al., 2005) samples a Cartesian q-space grid by varying both

the gradient strengths and gradients directions. Despite being demanding in terms of

acquisition time, DSI provides directly an estimate of the propagator P.

Combining spherical and Cartesian acquisition schemes, a hybrid protocol has

been recently introduced (Wu and Alexander, 2007). Hybrid Diffusion Imaging (HYDI)
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acquires measurements on concentric q-space shells. Angular resolution is gradually

increased with |q| value, giving relatively low angular sampling at low |q| and HARDI

measurements at high |q| values. Using these data, various types of analysis can be

followed; for instance, DTI analysis can be performed using low |q| value shells, while

DSI analysis can be performed by regridding the measurements from all acquired shells

on a Cartesian lattice.
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3
Resolving fibre crossings

Diffusion tensor imaging (DTI) has been the most commonly used DW-MRI method,

both in research and clinical environments. This is mainly due to: a) the low sampling

requirements that allow fast scanning protocols and b) the processing simplicity asso-

ciated with the required linear model regression. Despite its potential, DTI suffers from

the assumption that, within a voxel, the diffusion scatter pattern exhibits a single di-

rectional maxima. This accommodates regions with isotropic diffusion profile, where

no coherent structure is present and also regions with highly anisotropic profile, where

white matter axons run in parallel.

However, given the low resolution of the DW images (1-2 mm), one can easily

imagine more complex scenarios within a voxel in brain white matter, such as cross-

ing, bending and fanning fibres. For all these cases, DTI will reveal a diffusion profile

with a single directional maxima, making some fibre configurations indistinguishable

from a bundle of unidirectional axons (Seunarine and Alexander, 2009). To resolve

such complex scenarios, other model-based or model-free methods have been devel-

oped. A few of the existing methods have been introduced in the previous chapter

(e.g. DSI), however a more thorough review is presented here, focusing on crossing
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fibre configurations that have a diffusion profile with multiple maxima.

3.1 DTI and oblate tensors

A special case of crossing fibres can be picked up by DTI. For close to perpendicular

crossings of (geometrically) identical tracts, the estimated diffusion tensor has a disk-

like shape, commonly known as planar or oblate (Wiegell et al., 2000). An oblate tensor

has approximately equal principal and secondary eigenvalues, both being much larger

than the third eigenvalue (λ1 ≈ λ2 ≫ λ3). Its principal eigenvector e1 alone does

not provide any meaningful structural information, however the plane spanned by e1

and e2 (and is normal to e3) has been empirically found to coincide with the plane in

which the fibres cross (Wiegell et al., 2000). In the case of two identical populations

with the same volume fraction, crossing at right angles, e1 and e2 can point anywhere

within this plane (with the restriction that they are orthogonal), while e3 has a more

direct interpretation. Examples of oblate tensors estimated using DTI on voxels with

crossing fibres are presented in Fig. 3.1. Different crossing angles were simulated and

the estimated diffusion ellipsoids are presented. Note how the FA and the ellipsoid

directionality increase as the crossing angle deviates from 90 degrees. This is due to

an increase in the difference between the estimated eigenvalues (λ1 increases and λ2

decreases). However, even for the case of 60o crossing, e3 is normal to the crossing

plane.

To discriminate between the three tensor shapes, spherical, oblate and prolate,

Westin et al introduced three scalar indices (Westin et al., 2002). The spherical, pla-

nar and linear index, respectively, are defined as:

cs =
3λ3

λ1 + λ2 + λ3
, cp =

2(λ2 − λ3)

λ1 + λ2 + λ3
, cl =

λ1 − λ2

λ1 + λ2 + λ3
. (3.1)

Westin’s indices range from zero to one and their sum equals to one. Each of them

quantifies similarity to a perfect sphere, plane or line, while 1-cs,p,l quantifies deviation

from these shapes. Fig. 3.1 shows how the value of the planar index changes with the

crossing angle, when a diffusion tensor is estimated within a voxel with crossing fibres.

25



CHAPTER 3: RESOLVING FIBRE CROSSINGS

Figure 3.1: Oblate di�usion ellipsoids estimated at crossing regions. A mixture of
two prolate tensors (FA=0.8) with di�erent crossing angles (90o-60o) was used to
simulate the data. The di�usion tensor (DTI) model was then �tted to the simulated
data. For each case, the FA and the planar index cp of the tensor are shown. The
black arrows correspond to the DTI tensor eigenvectors and the blued dashed lines
to the crossing orientations.

3.2 The multi-tensor model

The multi-tensor model is a direct extension of the DTI model that allows estimation of

N ≥ 1 fibre orientations (diffusion profile maxima). It stems from the assumption that

the diffusing medium can be described by N homogeneous compartments. Within each

of them, Gaussian diffusion takes place without exchange to other compartments (Tuch

et al., 2002). Then, the diffusion propagator is described as a mixture of N trivariate

zero-mean Gaussians with covariance matrices 2τDi, i = 1...N and volume fractions fi;

each tensor Di corresponding to a different compartment. First introduced by Tuch et

al (Tuch et al., 2002), the model is:

S(g) = S(0) ·
N

∑
i=1

fiexp(−bgTDig), with
N

∑
i=1

fi = 1 , (3.2)

b and g characterizing the applied diffusion-sensitizing magnetic field gradient (g being
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a unit direction vector). The principal eigenvectors of the estimated tensors provide

fibre orientation estimates. Due to the increased number of parameters (e.g. 13 for

N=2), this model is usually fitted to HARDI data (Tuch et al., 2002).

The multi-tensor framework has a number of drawbacks. The number N of com-

partments coexisting in a voxel should be decided in advance, creating thus a model

selection problem. Furthermore, the model is non-linear and so can be difficult to fit.

Many studies estimate the parameters by minimizing the sum of squared residuals

(Alexander and Barker, 2005; Kreher et al., 2005; Peled et al., 2006; Tuch et al., 2002).

The estimates may depend on the values used to initialize the fitting procedure, as

the objective function exhibits multiple local minima (Tuch et al., 2002). This makes

the solution highly unstable, especially for N>2. To increase the fitting robustness,

a number of geometrical constraints have been employed. A two-tensor model with

the eigenvalues of each tensor being fixed to predefined values was utilized in (Tuch

et al., 2002), while cylindrically symmetric tensors (λ2 = λ3) were fitted in (Alexan-

der and Barker, 2005). Peled et al estimated two cylindrically symmetric tensors that

were also restricted to lie within the crossing plane revealed by DTI (see Fig. 3.1), in

regions where an oblate DTI tensor was estimated. To overcome partial volume, a two

anisotropic and one isotropic tensor model was introduced in (Kreher et al., 2005) for

the estimation of two fibre orientations. This captured scenarios where two crossing

WM populations coexist in a voxel with fluid-filled regions or GM structures.

Regarding the model selection problem various methods have been employed.

In (Tuch et al., 2002), the two-tensor model was fitted in voxels with a low correlation

between the measured signal and the one predicted by the DTI model. In (Kreher et al.,

2005), both the multi-tensor and the DTI models were applied to a voxel and an F-test

assessed the hypothesis that the multi-tensor model improved the fit significantly over

the DTI model. Westin’s planar index was used in (Peled et al., 2006) to identify oblate

DTI tensors, considered representative of crossing regions. In (Alexander et al., 2002),

the structural complexity was characterized using a spherical harmonic expansion of

the ADC profile (−ln[S(g)/S(0)]/b). For a single fibre population, the ADC obtained

from the DTI model is quadratic in terms of the elements of the applied direction g (see

Eq. (2.14)); or equivalently in terms of the sinusoids of the measurement angles θ and

φ (Eq. (3.12)). It can thus be described by spherical harmonics up to 2nd order (Frank,
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2002). By testing the goodness of fit of spherical harmonic series, truncated at 2nd and

higher orders, to the measured ADCs, a voxel was classified as containing one or more

fibre populations. This model selection technique was further employed in (Parker and

Alexander, 2003) to fit one or two tensor models.

The "ball and sticks" model

A special case of the multi-tensor model was introduced by Behrens et al (Behrens

et al., 2003, 2007). The tensor mixture comprises of a perfectly isotropic (the "ball")

and N perfectly anisotropic compartments (the "sticks"), one per fibre population. The

model reduces to:

S(g) = S(0)

[

(1−
N

∑
i=1

fi)exp(−bd) +
N

∑
i=1

fiexp(−bd(g · vi)
2)

]

, (3.3)

with d being the diffusivity and vi a vector describing the ith fibre orientation. Accord-

ing to this model, diffusion is allowed along each fibre orientation, while the isotropic

compartment captures all other diffusing motions. A modification of this model is pre-

sented in (Hosey et al., 2005), with diffusion perpendicular to fibre orientations being

explicitly modelled. A graphical representation of the multi-tensor and ball and sticks

model is presented in Fig. 3.2.

A common feature of the above studies (Behrens et al., 2003, 2007; Hosey et al.,

2005) is that they use a Bayesian framework to perform the model regression. The

model parameters ω are treated as random variables and the joint posterior proba-

bility density function, given the data Y, is defined using Bayes’ theorem: Π(ω|Y) =

Π(Y|ω)Π(ω)�
∫

ω Π(Y|ω)Π(ω)dω. A random sample of values for each parameter

can then be drawn from the posterior Π(ω|Y), using e.g. Markov-Chain Monte-Carlo

(MCMC) algorithms (Behrens et al., 2003). Estimating a distribution rather than a single

value per model parameter is particularly useful for probabilistic tractography meth-

ods, as it will be shown in the next chapter.
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Figure 3.2: Graphical representation of the multi-tensor and the ball and sticks
model used to resolve �bre crossings.

The tensor distribution function

A direct extension of the multi-tensor model has been recently introduced (Jian et al.,

2007; Leow et al., 2009). Rather than estimating a finite number of tensors, a tensor

distribution function (TDF) is resolved. The TDF is defined on the space of second

order tensors D and assigns weights to the tensors that best explains the measured

signal. The underlying model is (Leow et al., 2009):

S(g) = S(0)
∫

D

TDF(D) exp(−bgT · D · g)dD . (3.4)

According to Eq. 3.4, the diffusion propagator is modelled as an infinite sum of

zero-mean trivariate Gaussians, each having a covariance matrix 2τDi and a volume

fraction TDF(Di). Once the TDF is estimated, a tensor orientation distribution (TOD)

can be obtained by integrating over the eigenvalues:

TOD(u) =
∫

λ

TDF(D(λ, u))dλ , (3.5)

with λ = (λ1, λ2, λ3) and u the principal direction of tensor D. The TOD has a very

sharp angular profile and can provide multiple peaks in crossing regions, without the
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need of model selection.

A similar model as in Eq. 3.4 is followed in (Jian et al., 2007). However, the TDF is

parameterized by a mixture of Wishart distributions, the latter being distributions de-

fined for non-negative matrix-valued random variables. The shape of the distributions

is predefined and common for all image voxels, assuming that all fibres have the same

anisotropy profile.

3.3 Q-ball imaging and diffusion ODF

Most multiple tensor approaches utilize HARDI data, due to the increased number of

model parameters. Other model-free or model-based approaches also utilize spherical

sampling schemes with relatively high angular resolution. Q-ball imaging is a model-

free approach that is presented here, while other HARDI-based methods are reviewed

in the next section.

Q-ball imaging (QBI) (Tuch, 2004) is amongst the most popular HARDI-based

methods used to resolve fibre crossings. It reconstructs the angular profile of the dif-

fusion propagator P, commonly known as the orientation distribution function (ODF).

While P represents the probability of displacing r µm along a direction u, the ODF rep-

resents how likely is to observe any diffusion displacement along u. It is the radial

projection of P and can be obtained by integrating P over all possible displacement

distances along a unit direction u (Tuch, 2004):

ODF(u) =
1

Z

∞
∫

0

P(ru)dr , (3.6)

with Z being a constant that ensures ODF normalization to unit mass.

The Q-ball imaging ODF is estimated using the Funk-Radon transform (FRT )

of the attenuated signal E(q) = S(q)/S(0). The FRT of the sampled E(q) along

a direction u is the integral of E(q) values along the equator perpendicular to u. In

(Tuch, 2004), it is shown that the FRT of the signal attenuation is approximately equal

to the ODF:

ODF(u) ≈ FRT [E(q)](u) ≡
∫

δD(u · q) · E(q)dq , (3.7)
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with δD being the Dirac function. The approximation improves for larger sampling

radii |q|. For relatively lower |q| the FRT provides a smoothed version of the true

ODF.

To implement Eq. (3.7) numerically, a large number of measurements E are needed

along the equator perpendicular to u. Then ODF(u) ≈ (1/Z) ∑i E(q̃i), with q̃i be-

ing points on the respective equator and Z a constant ensuring normalization to unit

mass. Since the points q̃i will not necessarily coincide with the measurement points,

an interpolation scheme is utilized. The measured signal can be expressed as a linear

combination of some basis functions ψ(·), such that (Alexander, 2005a):

E(q) =
R

∑
j=1

cjψj(q) . (3.8)

As will be shown in section 3.4, the coefficients cj can be estimated from the measure-

ments and Eq. (3.8) can then provide an estimated measurement for any point q̃i. In

(Tuch, 2004), spherical radial basis functions were employed to interpolate the signal.

A large number of diffusion-sensitizing gradients were also used (>252) to robustly

estimate the ODFs. In more recent studies (Descoteaux et al., 2007; Hess et al., 2006),

spherical harmonics were utilized, offering a more compact set of basis functions that

reduce scanning requirements to 50-60 directions. Spherical harmonics also exhibit a

property that allows the analytic computation of the Funk-Radon transform, without

the need for numerical integration.

The ODF exhibits multiple local maxima in crossing regions, which are routinely

used as fibre orientation estimates; even if these estimates are biased for small crossing

angles (Zhan and Yang, 2006). A generalized anisotropy measure (GFA) can be also

defined, using the standard deviation of the ODF values on the sphere (Tuch, 2004):

GFA =

√

n ∑
n
i=1(ODF(ui)−ODF)2

(n− 1) ∑
n
i=1 ODF(ui)2

, (3.9)

with n evaluations of the ODF needed at points ui (evenly distributed on the sphere)

and ODF being the mean ODF value.
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ODF for Gaussian diffusion propagator

A simple analytic expression can be obtained for the diffusion ODF, if the Gaussian

diffusion propagator of DTI is utilized. Using Eqs. (2.9) and (3.6) we obtain:

ODF(u)DTI =
1

√

(4πτ)3|D|
·

∞
∫

0

exp

(−uT · D−1 · u
4τ

r2

)

dr . (3.10)

This integral is of a known form that can be analytically computed (Zwillinger, 2003):

∞
∫

0

exp
(

−αrβ
)

rndr =
Γ( n+1

β )

βα
n+1

β

,

with Γ(·) being the gamma function. Using n = 0, β = 2 and Z a normalization

constant, we obtain:

ODF(u)DTI =
Z√

uT · D−1 · u
. (3.11)

The difference between the Q-ball and DTI ODFs is that the latter is single-peaked

due to the Gaussian assumption. This is illustrated in Fig. 3.3, where the ODFs esti-

mated from human diffusion tensor and Q-ball imaging data in the same region are

presented.
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Figure 3.3: DTI and Q-ball ODFs plotted for (roughly) the same coronal slice. The
crossing between the corpus callosum and the corona radiata at the region of the
centrum semiovale is shown magni�ed for each case. Q-ball ODFs have clearly two
peaks in this region. All ODFs have been sharpened (min-max normalized (Tuch,
2004)). DTI ODFs are superimposed on FA maps and Q-ball ODFs on GFA maps.

3.4 Spherical harmonics for diffusion ODF estimation

In this thesis, spherical harmonics will be used to reconstruct Q-ball ODFs. The frame-

work is, therefore, presented here parenthetically.

Let θ (0 ≤ θ ≤ π) and φ (0 ≤ φ < 2π) the zenith and azimuth angles in a spherical

coordinate system, as shown in Fig. 3.4. Any point (x, y, z) can then be described by

these two angles and vice versa:

θ = acos(z/r) x = rsinθcosφ

φ = atan(y/x) ⇄ y = rsinθsinφ

r =
√

x2 + y2 + z2 z = rcosθ

(3.12)
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Figure 3.4: Zenith θ and azimuth φ angles in a spherical coordinate system.

Spherical harmonics are complex functions of (θ, φ) defined on the surface of the

unit sphere. A harmonic of order l ∈ {0, 1, 2, ...} and degree m ∈ {−l,−l + 1, ..., 0, ..., l−
1, l} is defined as (Press et al., 1992):

Ym
l (θ, φ) =











√

2l+1
4π ·

(l−m)!
(l+m)!

· Pm
l (cosθ) · eimφ if m ≥ 0

(−1)−mY−m∗
l (θ, φ) if m < 0 ,

(3.13)

with Y∗ the complex conjugate and Pm
l the associated Legendre polynomials:

Pm
l (x) = (−1)m(1− x2)m/2

(

dm

dx
Pl(x)

)

, m ≥ 0 (3.14)

Pl(x) =
1

2l l!

(

dl

dx
(x2 − 1)l

)

.

The harmonics of the first few orders are shown in Fig. 3.5. Spherical harmonics

(SH) form an orthonormal basis, such that every complex function f on the unit sphere

can be written as a linear combination of SHs (Alexander et al., 2002):

f (θ, φ) =
∞

∑
l=0

l

∑
m=−l

clmYm
l (θ, φ) . (3.15)

The coefficients of the above SH series can be obtained from the inverse transform,
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Figure 3.5: Real part squared of spherical harmonics up to l=4 order.

called the spherical harmonic transform (SHT):

clm =

2π
∫

0

π
∫

0

f (θ, φ)Ym∗
l (θ, φ)sinθ dθdφ . (3.16)

A harmonic function of order l contains polynomial terms up to order l. Thus, the

harmonic orders l effectively correspond to frequency modes on the unit sphere (Frank,

2002). Higher orders represent higher frequency components. Relatively smooth func-

tions can be described using SHs of low order. Therefore, in practice, the SH series is

truncated to a maximum order lmax.

Real spherical harmonics

The measured diffusion signal can be considered as a function on the sphere. There-

fore, it can be represented as a SH series. Spherical harmonics of even order l exhibit

antipodal symmetry, i.e. Ym
l (π − θ, φ + π) = Ym

l (θ, φ), while of odd order l are antipo-

dally anti-symmetric, i.e. Ym
l (π − θ, φ + π) = −Ym

l (θ, φ). Since the diffusion signal is

antipodally symmetric, harmonics of even order only are used to represent it. Further-
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more, the diffusion signal attenuation is real. A modified SH basis that comprises of

real spherical harmonic functions exists (Descoteaux et al., 2007):

YRm
l (θ, φ) =



























√

2l+1
2π ·

(l−m)!
(l+m)!

· Pm
l (cosθ) · sin(mφ) if m > 0

Y0
l (θ, φ) if m = 0

(−1)−m
√

2l+1
2π ·

(l+m)!
(l−m)!

· P−m
l (cosθ) · cos(−mφ) if m < 0

=



























√
2 · Im[Ym

l (θ, φ)] if m > 0

Y0
l (θ, φ) if m = 0

√
2 · (−1)−m · Re[Y−m

l (θ, φ)] if m < 0 .

(3.17)

Following the convention of (Descoteaux et al., 2007), we can define a single har-

monic index j = (l2 + l + 2)/2 + m with l ∈ {0, 2, 4, 6, ..lmax} and m ∈ {−l,−l +

1, ..., 0, ..., l − 1, l}. Setting Yj(θ, φ) = YRm
l (θ, φ), we can describe the real, symmetric

diffusion signal attenuation using even real SHs:

E(θ, φ) =
R

∑
j=1

cjYj(θ, φ) , (3.18)

with R = (lmax + 1)(lmax + 2)/2 the number of SH coefficients cj. The DW signal is

measured along M diffusion-sensitizing directions (θi, φi). Using these measurements,

R ≤ M coefficients can be estimated using linear least squares (Alexander et al., 2002).

If E is a M× 1 vector containing all the measurements E(θi, φi), C a R× 1 vector with

the unknown SH coefficients and Y a M × R matrix containing the values of the SH

functions at points (θi, φi), then we can write:
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Y1(θM, φM) Y2(θM, φM) · · · YR(θM, φM)

















·

















c1

c2

...

cR

















=⇒

E = Y ·C =⇒ C = (YTY)−1YTE . (3.19)

This solution provides a discrete approximation to the exact solution of Eq. (3.16).
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ODF representation using spherical harmonics

A useful relationship exists that can be used to represent ODFs analytically in terms

of spherical harmonics. Both Hess et al (Hess et al., 2006) and Descoteaux et al (De-

scoteaux et al., 2007) have proved that:

∫

δD(u · q) ·Yj(q)dq = 2πPlj
(0) ·Yj(u) , (3.20)

where Plj
the Legendre polynomial and lj the order associated with the jth element of

the modified SH basis. If we express the signal attenuation in spherical harmonics as

in Eq. (3.18) and compute the coefficients cj through Eq. (3.19), the ODF can then be

estimated as:

ODF(u) ≈
∫

δD(u · q) · E(q)dq =
∫

δD(u · q) ·
R

∑
j=1

cjYj(q)dq =⇒

ODF(u) ≈
R

∑
j=1

cj · 2πPlj
(0) ·Yj(u) . (3.21)

3.5 Other HARDI-based approaches

Persistent angular structure and Diffusion orientation transform

Even after sharpening, ODFs are rounded and smooth. However, the fibre orientation

profiles are expected to be relatively spiky. Towards this direction, the persistent angu-

lar structure (PAS) MRI computes an angular feature of the diffusion propagator that

has a sharp profile (Jansons and Alexander, 2003). The PAS function p̃ is defined on the

unit sphere as a non-linear combination of cosines that captures the angular structure

of the diffusion scatter pattern:

p̃(u) = exp

(

λ0 +
M

∑
j=1

λjcos(rgj · u)

)

. (3.22)

M is the number of measurements, gj are the measurement directions, r is a smoothing

parameter and λ′s are the unknown coefficients. To estimate them, the Fourier trans-

form of the PAS is fitted to the spherically sampled signal attenuations. The peaks of the
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PAS indicate fibre orientations. PASMRI requires fewer samples than QBI to achieve

the same accuracy in resolving fibre crossings (Alexander, 2005a). Its main drawback

is the high computational requirements, however recent work has shown optimized

computation time (Sakaie, 2008).

The diffusion orientation transform (DOT) (Ozarslan et al., 2006) calculates a vari-

ant of the diffusion ODF. The angular structure P(Ru) of the diffusion propagator is

estimated at a fixed radius R, contrary to Q-ball imaging that integrates over all pos-

sible radii. HARDI data, sampled on a single q-space shell, are utilized and DOT is

applied to the ADC values −ln[S(g)/S(0)]/b corresponding to the measurements. By

increasing R, DOT can provide finer estimates of the underlying fibre orientations in

crossing regions.

Resolving the ADC profile

A group of methods have particularly focused on resolving the ADC profile using

HARDI data. The ADC, as a function on the sphere, has been represented either

through spherical harmonics (Descoteaux et al., 2006) or higher order tensors (Ozarslan

and Mareci, 2003):

ADC(g) ≡ −1

b
ln

[

S(g)

S(0)

]

=
∞

∑
l=0

l

∑
m=−l

clmYm
l (g) =

3

∑
i1=1

3

∑
i2=1

. . .
3

∑
il=1

Di1i2 ...il
gi1 gi2 . . . gil

,

(3.23)

with D being a symmetric, rank l tensor that comprises of 3l elements, of which only

(l + 1)(l + 2)/2 are independent (Ozarslan and Mareci, 2003). Estimation of a higher

order tensor of rank l is termed Generalized DTI and reduces to DTI for l=2. It is

equivalent to fitting a spherical harmonic series of maximum order l. As shown by

Ozarslan et al (Ozarslan and Mareci, 2003), the spherical harmonics coefficients up to

order l are algebraically related to the elements of a rank l tensor. Higher order tensors

can provide new tensor-derived scalar parameters, such as a generalized anisotropy

index, which performs better in voxels of complex structure than the DTI FA. However,

estimating fibre orientations from ADC profiles, especially in crossing regions, is still

far from obvious.
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3.6 Spherical deconvolution and fibre ODF

Spherical deconvolution methods utilize HARDI data, as well. However, they are pre-

sented here separately, due to the large number of existing implementations.

Even if features of the diffusion propagator, such as the diffusion ODF and the PAS

function, have been empirically found to provide orientation estimates, the function of

interest for tractography is the distribution of fibre orientations. Spherical deconvolu-

tion (Alexander, 2005b; Anderson, 2005; Dell’Acqua et al., 2007; Tournier et al., 2004)

allows the direct estimation of such a function, known as the fibre orientation distri-

bution function (fODF). The measured signal E(q) is treated as the convolution of the

fODF F with the signal R(q, u) obtained at a measurement wavevector q from a single

fibre population with orientation u:

E = F⊗ R => E(q) =
∫

F(u)R(q, u)du . (3.24)

If the single fibre response R is known, then the unknown fODF F can be estimated us-

ing deconvolution methods. This approach assumes that there is no exchange between

the mixing compartments, within a voxel (Tournier et al., 2004).

The deconvolution proposed by Tournier et al (Tournier et al., 2004) is transformed

to the unit sphere domain. Both E and F are represented by spherical harmonics, while

R is estimated from the most anisotropic voxels in the brain and represented by rota-

tional harmonics (Healy et al., 1998). Noticing that a spherical harmonic transform is

effectively a Fourier transform on the sphere allows the representation of convolution

with a set of (lmax + 2)/2 matrix multiplications El = Rll ·Fl , l = 0, 2, ...lmax (Healy et al.,

1998). Vector El comprises of the lth order spherical harmonic coefficients estimated

from the attenuated signal, vector Fl of the unknown lth order spherical harmonic co-

efficients of the fODF and matrix Rll of the lth order rotational harmonics coefficients

estimated from the single fibre response. Therefore, deconvolution is reduced to a set

of matrix inversions, one per utilized harmonic order l (Tournier et al., 2004).

Tournier et al (Tournier et al., 2004) assume a common single fibre response across

all voxels. To improve on this assumption, Anderson derives an individual response

function R for each voxel based on a multi-tensor model (Anderson, 2005). R depends
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on the mean and transverse diffusivities estimated from the data. Deconvolution is

performed using spherical harmonic representations for all three functions E, R and F

that allows an analytic calculation of the fODF coefficients.

Utilizing truncated spherical harmonics for deconvolution introduces artefacts (An-

derson, 2005; Tournier et al., 2004) that appear as small-amplitude, high frequency

lobes near the origin. This is due to the fact that the fODF is a very sharp function,

ideally a sum of delta functions. Furthermore, non-negativity of the estimated fODF,

caused by noise, harmonics truncation or an inappropriate response function is not

guaranteed using the methods described before. Both issues are tackled in (Dell’Acqua

et al., 2007), using an iterative algorithm to perform the deconvolution. In (Tournier

et al., 2004), noise artifacts are low-pass filtered by attenuating the coefficients of higher

harmonic orders. In (Tournier et al., 2007), the authors impose zero fODF amplitude

as a constraint along the directions with negative fODF values. Refined estimates of

the fibre orientation distribution are obtained in an iterative fashion, until convergence

is achieved. In (Alexander, 2005b), a non-linear representation of the fODF is utilized.

This ensures a sharp profile and positive definiteness of the estimated function.

A Bayesian framework for performing deconvolution is introduced in (Kaden et al.,

2007). This estimates not only the fODF in each voxel, but also its uncertainty given the

data, by drawing a random sample of fODFs. To achieve that a model-based approach

is followed. The fODF is modelled as a mixture of N Bingham distributions, each of

which represents a single fibre population. The signal is then expressed as the convo-

lution integral of this Bingham mixture with a single fibre response kernel, common to

all voxels. The drawback of this technique is that a model selection problem arises for

finding the N that best fits the data.

FODF and diffusion ODF

In a recent study, Descoteaux et al (Descoteaux et al., 2009) developed a formal rela-

tionship between the fODF and the diffusion ODF. The diffusion ODF in a voxel can

be described as the convolution of the fODF F with the diffusion ODF RODF of a single

fibre population: ODF = F⊗ RODF. Thus, the ODF deconvolution will provide an esti-

mate of the fODF. Using real spherical harmonics, described in Section 3.4, an analytic
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solution exists:

F(u) =
R

∑
j=1

f j ·Yj(u) =
R

∑
j=1

cj

rj
· 2πPlj

(0) ·Yj(u) , (3.25)

with f j and cj being the spherical harmonic coefficients for the fODF and the measured

signal attenuation, respectively, and rj being coefficients that depend on the single fibre

response RODF (they are given analytically in (Descoteaux, 2008)). It should be pointed

out that cj2πPlj
(0) are the coefficients of the diffusion ODF and the fODF coefficients

can be obtained with a single scaling factor. A comparison between DTI ellipsoids,

diffusion ODFs and fODFs for a single population, a 60o and a 90o crossing are shown

in Fig. 3.6.

Figure 3.6: DTI ellipsoids, Q-ball di�usion ODFs and fODFs estimated on simulated
data of (from top to bottom): a single �bre bundle, a 60o crossing and a 90o

crossing. ODFs sharpened through min-max normalization (Tuch, 2004) are also
presented. FODFs were obtained through ODF deconvolution (Descoteaux et al.,
2009). Simulation parameters: b=3000 s/mm2, 61 directions, individual bundle
FA=0.8).

3.7 Diffusion spectrum imaging and other q-space approaches

Despite HARDI being the most popular scanning protocol for resolving fibre crossings,

Diffusion Spectrum Imaging (DSI) (Wedeen et al., 2005) offers another alternative, by
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allowing direct estimation of the diffusion propagator P, as explained in section 2.4.

The diffusion ODF can then be calculated by radial integration of the propagator (Eq.

3.6). Exactly as in Q-ball imaging, the DSI ODF peaks provide estimates of fibre orien-

tations. However, the DSI ODF provides a better estimation of the radial projection of

P compared to the Q-ball ODF, which approximates it by the Funk-Radon transform of

the measurements. On the other hand, sampling a q-space grid is very time consum-

ing, making DSI impractical for certain applications. Even the most recent optimized

DSI protocols (Wedeen et al., 2008) require roughly 50 minutes of scanning per subject

to achieve a moderate spatial resolution.

Composite hindered and restricted model of diffusion

Compared to DSI, the composite hindered and restricted model of diffusion

(CHARMED) (Assaf and Basser, 2005; Assaf et al., 2004) requires a smaller number

of q-space samples. It has been found that the measured signal along a certain direc-

tion, as a function of |q| deviates from its monoexponential decay character used in

DTI, particularly at high |q| values and in WM (Clark and Le Bihan, 2000). Instead,

the signal follows a multi-exponential decay and diffusion deviates from the assumed

Gaussian behaviour. Commonly, two different diffusive compartments are evident,

known as the fast and slow compartments (Clark and Le Bihan, 2000). The former has

a higher volume fraction and ADC than the latter, which contributes to the signal only

at high |q|. In the CHARMED framework, a different model is assigned to each of the

two compartments, which are treated as extra-axonal and intra-axonal spaces (Assaf

and Basser, 2005; Assaf et al., 2004). A model of hindered diffusion describes diffu-

sion in the extra-axonal space and a sum of models of restricted diffusion describes

intra-axonal diffusion. The signal attenuation is:

E(q) = fhEh(q) +
N

∑
k=1

frkErk(q) . (3.26)

The explicit models for Eh and Er are presented in (Assaf et al., 2004). Briefly, the

hindered model is Gaussian (i.e. free diffusion) and the restricted non-Gaussian, de-

scribing diffusion within a cylinder. Er dominates at high |q| and describes much more

anisotropic diffusion than Eh, in agreement with the findings in (Clark and Le Bihan,
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2000) that the slow compartment is more anisotropic than the fast. The number N of

restricted compartments used in the model defines the maximum number of crossing

fibre orientations that can be resolved. The scanning protocol is described in (Assaf

and Basser, 2005) and comprises of multiple spherical shells with the sampling angular

resolution increasing with |q|.

Diffusion kurtosis imaging

Another q-space approach that requires fewer samples than DSI is diffusion kurtosis

imaging (DKI) (Jensen et al., 2005). DKI estimates the covariance (2nd moment) and

kurtosis (4th moment) of the diffusion propagator P, rather than P itself. The kurtosis

quantifies deviation of a probability density function from Gaussian behaviour. There-

fore, it increases with structure complexity and heterogeneity and can therefore be used

as a measure of tissue structure (Jensen et al., 2005). It is in general small along the fi-

bres and large across them. The signal equation is modified to:

S(b) = S(0) exp(−bDapp +
1

6
b2D2

appKapp) , (3.27)

with Dapp and Kapp the apparent diffusion and kurtosis coefficients along the direction

of the applied diffusion sensitizing gradient. The above equation is valid for relatively

small b values (<3000 s/mm2). If enough measurements are obtained, the 2nd order

diffusion and 4th order kurtosis tensors can be estimated from the apparent coefficients

(Lu et al., 2006). Scalar measures derived from the kurtosis tensor have been shown

to provide enhanced contrast between different tissue types compared to their DTI

counterparts.

Orientation information can be also obtained from DKI. Taking the Fourier trans-

form of the signal in Eq. (3.27) and then its radial projection gives the diffusion kurtosis

ODF (Lazar et al., 2008). This has both Gaussian and non-Gaussian components. The

latter can reliably resolve fibre crossings of small crossing angles, where traditional

HARDI methods, such as Q-ball imaging, fail.
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4
White matter tractography

Through diffusion MRI, structural features of tissue can be resolved. Especially for

brain white matter (WM), orientations of fibre bundles can be estimated within each

voxel, as discussed in the previous chapter. Over the last years, a group of algorithms

have been developed that utilize these orientation estimates to reconstruct WM tracts

in the brain. Commonly known as tractography methods, they provide a tool to resolve

major neuronal fibre bundles non-invasively and in-vivo (Catani et al., 2002; Mori et al.,

2005), as shown in Fig. 4.1.

Tractography algorithms effectively reconstruct the paths in the brain, along which

water diffusion is least hindered (Behrens and Jbabdi, 2009). In the case of WM, molecu-

les are more hindered in a systematic way by the axonal membranes and the myelin

sheaths (Beaulieu, 2002). They will, thus, diffuse along rather than across the neuronal

axons. This preferred diffusion directionality can indirectly infer geometrical features

of the underlying axonal bundles. Therefore, tractography methods provide informa-

tion on the route of group of axons, rather than on individual axonal processes (note

that individual subcortical axons have a diameter in the order of a few µm, while the

DW imaging resolution is in the order of 1-2 mm).
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Figure 4.1: Major white matter tracts reconstructed using DW imaging and trac-
tography (FACT reconstruction with the brute-force approach (Huang et al., 2004)
was utilized on DTI images). An axial (left) and a sagittal (right) view are shown
with the brain outline in grey. Blue: Genu and splenium of corpus callosum, Yel-
low: Cingulum, Green: Superior longitudinal fasciculus, Red: Inferior longitudinal
fasciculus, Orange: Inferior fronto-occipital fasciculus, Turquoise: Optic radiation,
Purple: Part of corona radiata, Dark orange: Anterior thalamic radiation.

Most tractography techniques can be grouped in two categories, as pointed out in

(Behrens and Jbabdi, 2009). Local approaches propagate a curve from a starting (seed)

point using locally greedy criteria, i.e. tracking sequentially through orientation esti-

mates in adjacent voxels. Global approaches identify the best path between two points

of interest, according to some optimization criterion, rather than identifying paths aris-

ing from a single point. In the next sections, representative methods from each category

are discussed. A third category is also presented, comprising of algorithms that simu-

late the diffusion process or solve the diffusion equation to reconstruct WM tracts.

4.1 Local approaches

Deterministic streamline tractography

Fibre orientations e can be estimated in each voxel from DW images. For now, we

will assume a single orientation per voxel, as is the case for DTI, where the principal

eigenvector of the diffusion tensor is used in each voxel. However, the approaches
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discussed here can be generalized to include multiple intravoxel orientations, as shown

in (Chao et al., 2008; Descoteaux et al., 2009; Wedeen et al., 2008).

The orientation estimates form a vector field. Assuming a white matter tract can

be represented by a 3D space curve, the simplest tractography approaches estimate the

curve r(s) that is tangent to the orientation vector field (Basser et al., 2000). Such a curve

is called a streamline. Streamline tractography is then governed by the differential

equation:
dr(s)

ds
= e(r(s)), r(0) = ro . (4.1)

The vector r(s) gives a point on the curve, s is the distance along the curve and ro a start-

ing (seed) point. The above differential equation is continuous, however orientation

estimates are available only for discrete locations. It can thus be solved numerically, by

approximating the rate of change dr(s)/ds with a finite difference. This gives the Euler

approximation, first used in (Conturo et al., 1999):

r(sn+1) = r(sn) + he(r(sn)) , (4.2)

with h being a small step size (small relative to the curvature of the trajectory), during

which the orientation is assumed unchanged. From the above equation, one can ob-

serve that orientation estimates are needed for any arbitrary location r(sn). However,

measurements are available only on specific locations. If we assume that the estimates

lie at the centre of each voxel, we can apply interpolation techniques to "guess" what

an estimate would be at a different location. A trilinear interpolation scheme can be

employed (Tench, 2003). Another popular approach is to employ a nearest neighbour

interpolation, which effectively means that the same orientation estimate is followed

over the entire voxel (Mori et al., 1999). Known as fibre assignment by continuous

tracking (FACT), it has been amongst the first tractography algorithms. Due to the lack

of a smooth interpolant, FACT returns more rough streamlines, as shown in Fig. 4.2.

Regardless of the propagation method used, the complete trajectory from a seed is

estimated in two steps, one with e(ro) and a second with -e(ro). Propagation continues

until some stopping criteria are met. Tractography is usually stopped: a) when a low

anisotropy region is encountered (e.g. FA drops below 0.2) to avoid propagation within

CSF or GM regions and/or b) a large angle changes occur (e.g. larger than 45o) between
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Figure 4.2: Streamline tractography performed using FACT (left) and Euler method
with trilinear interpolation (right). Wide arrows represent the �bre orientation esti-
mate per voxel, while the black curved arrow the tract trajectory. Small black arrows
on the right panel represent the interpolated vector �eld. Voxels that are identi�ed
as belonging to the tract of interest are coloured with grey.

successive steps to avoid unrealistically sharp turns (Basser et al., 2000; Mori et al.,

1999). An example of streamline propagation within a DTI fibre orientation field in the

corpus callosum tract is shown in Fig. 4.3.

The approaches discussed so far tend to underestimate fibre branching. From a

seed point one curve will be reconstructed, therefore when a branching is encountered

one of the branching paths will be followed. A remedy to this problem has been pro-

posed in (Huang et al., 2004) via the brute-force approach. Instead of propagating

curves from a seed region, curves are seeded from all image voxels and the ones that

traverse the region of interest are kept.

Streamline methods can be also utilized when multiple orientations are estimated

in a voxel. These can be obtained, for instance, as the principal eigenvectors of multiple

tensors fitted to the data (Tuch et al., 2002), as the local peaks of the diffusion ODF

estimated using DSI (Wedeen et al., 2005) or QBI (Tuch, 2004), or as the local peaks of

the fibre ODFs (Tournier et al., 2004) (see (Alexander, 2005a) for a review). An approach

to deal with these cases, chooses, upon entering a voxel, the orientation that produces

the smallest curvature with the incoming path (Parker and Alexander, 2003; Wedeen

et al., 2008). Another approach follows all orientations that do not exceed a curvature

threshold, by initiating a new streamline per orientation (Chao et al., 2008; Descoteaux

et al., 2009).
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Figure 4.3: Left: DTI �bre orientation estimates in the region of corpus callosum
superimposed on FA values. The orientational coherence is evident, especially in
regions of high anisotropy. Right: A streamline generated within the vector �eld
using the Euler method with trilinear interpolation. The seed point is indicated with
the blue dot.

Streamline tractography utilizes only the fibre orientation estimates. In general,

more information is available upon post-processing of DW images. For example, with

DTI a diffusion tensor is computed. Tensor deflection tractography is a FACT variant

that uses the whole DTI tensor rather than just its principal eigenvector to determine

the direction of curve propagation (Lazar et al., 2003). In each voxel, the outgoing di-

rection vector e(r(s)) is determined by the application of the respective diffusion tensor

D to the incoming path direction vector, i.e. e(r(sn)) = D · e(r(sn−1)). The vector

e(r(sn−1) is deflected towards the direction of the principal eigenvector of D, with the

deflection angle increasing with tensor anisotropy. For perfectly spherical tensors the

deflection angle is zero, while for oblate tensors, the deflection is towards the ellip-

soid plane. Tensor deflection tractography is less sensitive to noise than streamline,

as shown in simulations for straight tracts (Lazar et al., 2003). It can also propagate

through regions of perpendicular fibre crossings, where the principal eigenvector of

the underlying oblate tensor is meaningless. However, tensor deflection underesti-

mates curvature for curved tracts. Furthermore, TEND results should be interpreted

carefully, as an incoming direction that coincides with any of the tensor eigenvectors

will not be deflected by that tensor; even if it is perpendicular to the principal eigen-
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vector of a highly prolate tensor (Lazar et al., 2003).

All the methods presented in this section are deterministic and provide binary

connectivity information. A voxel B can be either connected or not connected to the

seed S, depending on whether a streamline from S passes through B. To tackle this

issue, a group of probabilistic tractography approaches have been developed and these

are presented in the following section.

Probabilistic streamline tractography

Despite its success in delineating many major WM tracts (Catani et al., 2002; Mori et al.,

2005), deterministic streamline tractography provides no intrinsic way to assign a con-

fidence measure to a reconstructed path. Such a measure is useful, since streamlines

are prone to errors caused by experimental noise (Lazar and Alexander, 2003) and po-

tentially by the method used for orientation estimation. Therefore, when a streamline

is reconstructed, it would be useful to know how reproducible it is. Unless there is a

systematic error, the higher the reproducibility of a streamline, the higher the chance

to reflect true structural features of the underlying tissue rather than noise-induced,

fictitious pathways.

The ideal way to assess streamline reproducibility would be to repeat the MRI ex-

periment many times NR → ∞ and for each of these experiments reconstruct a stream-

line from the same seed point. Overlapping between these NR streamlines will give

an intrinsic reproducibility measure. Given that experiment repetition is not feasible

in practice, probabilistic tractography approaches aim to tackle this issue in an indirect

way.

Introduced at the same time by Behrens et al (Behrens et al., 2003) and Parker

et al (Parker et al., 2003), probabilistic tractography estimates a spatial distribution of

streamlines arising from a single seed rather than a single streamline. From a starting

point S, NR streamlines are generated. In each propagation step of each streamline,

a random perturbation of the underlying fibre orientation estimate is followed. Per-

turbations are generated using functions that characterize the uncertainty in the fibre

orientation within voxel. Once NR streamlines are generated in that fashion, a prob-

abilistic index of connectivity (PICo) between the seed S and an arbitrary point B is

49



CHAPTER 4: WHITE MATTER TRACTOGRAPHY

defined as p = MR/NR, where MR is the number of streamlines that traverse B. The

number of repetitions NR should be large enough to achieve a converged value for p.

An example of the index of connectivity calculated using a probabilistic approach is

shown in Fig. 4.4.

Figure 4.4: Deterministic streamlines (left) and probabilistic index of connectivity
(right) for a seed region of interest within the pyramidal tract at the level of the
pons. Sagittal sections are shown. Results, generated using the CAMINO toolkit
(Cook et al., 2006), are superimposed on a fractional anisotropy image.

The probabilistic framework is also capable of resolving fibre branching configura-

tions, due to the repeated curve propagation, each time with different fibre orientation

perturbations. On the contrary, as discussed before, traditional streamline tractography

follows a single branch when a branching is encountered.

Probabilistic approaches mainly differ in the way the orientation uncertainty is as-

sessed. A number of methods use a Bayesian framework to fit a model and calculate

the posterior probability of the model parameters (Behrens et al., 2003, 2007; Friman

et al., 2006; Zhang et al., 2009). A random sample of NR fibre orientation sets can then

be drawn in each voxel from the distribution of the orientation parameters; each orien-

tation set comprising of N ≥ 1 orientations, depending on the reconstruction method

employed. In (Behrens et al., 2003, 2007) the Monte Carlo-Markov chain (MCMC) ap-

proach is used to sample the orientation posterior distribution. In (Friman et al., 2006),

the posterior is computed numerically, after simplifying its Bayesian expression using

dirac priors on the nuisance model parameters. In (Zhang et al., 2009), particle filtering

is employed to draw a random sample from the orientation posterior.

An alternative to characterize uncertainty in fibre orientation estimates is boot-

strapping (Pajevic and Basser, 2003). The bootstrap method is a non-parametric sta-
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tistical procedure that estimates the distribution of a given parameter by randomly

drawing samples from a set of repeated measurements. DW acquisitions of M direc-

tions are repeated r times (instead of 1 acquisition of M directions). Then M images

are drawn randomly, with replacement, from this superset of measurements and fibre

orientations are estimated. That will be a single bootstrap sample. Drawing NR boot-

strap samples, will give a distribution for the fibre orientations. Bootstrap tractography

(Jones and Pierpaoli, 2005; Lazar and Alexander, 2005) utilizes this framework and for

a given seed point generates a streamline per bootstrap sample. Then a visitation index

can be defined in a similar fashion to PICo. The advantage of bootstrap tractography

is that no ad-hoc assumptions are made on the noise and is sensitive to all sources of

variability that affect the acquired dataset. Therefore, effects that cannot be modelled

parametrically, such as the effects of physiologic noise and of the scanning system in-

stabilities, will be considered.

Conventional bootstrap requires repeated acquisitions, i.e. a subject needs to be

scanned more than once with the same scanning parameters. A recent simulation study

showed that at least r = 5 repeats are needed for DTI data, so that the estimated dis-

tributions of tensor-derived parameters are close to the the true ones (O’Gorman and

Jones, 2006). Model-based residual bootstrap offers an alternative, since it requires only

a single data acquisition (Berman et al., 2008; Haroon et al., 2009; Jones, 2008). A model

needs to be fitted to the data and the model residuals are calculated. A single bootstrap

sample can then generated by permuting freely the residuals between all model pre-

dicted values. The model is then fitted to the new dataset, new residuals are calculated,

which are then added randomly to the model predicted values. The process is repeated

NR times to obtain NR bootstrap samples used subsequently for probabilistic tractog-

raphy. A special case of residual bootstrap is wild bootstrap (Jones, 2008), where only

the sign of the residuals is randomly permuted and each residual is then added back to

the respective datum. Wild bootstrap is suitable when the measured data points have

different variances (Whitcher et al., 2008).

Apart from Bayesian and bootstrap approaches, other groups use a calibration pro-

cedure to empirically predict the orientation uncertainty (Parker and Alexander, 2003,

2005; Parker et al., 2003). In (Parker et al., 2003) the orientation uncertainty in DTI data

is determined as a function of the degree of anisotropy FA. Higher FA values mean
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higher confidence on the principal eigenvector of the tensor. In (Parker and Alexander,

2003), Monte-Carlo simulations are utilized to predict the orientation uncertainty for

different tensor shapes and different number of tensors within a voxel. A lookup table

is created, indexed by the absolute and relative tensor eigenvalues. At a given SNR,

for each table entry, many noisy realizations of the signal are simulated using a single

or a two-tensor model. The orientations are estimated for each realization and the set

of orientations are used to estimate the parameters of an empirical orientation distri-

bution. A Normal distribution is assumed for the orientation of each tensor in (Parker

and Alexander, 2003) and a Watson distribution in (Cook et al., 2004). A similar calibra-

tion procedure is described in (Parker and Alexander, 2005), where the PAS function

(Jansons and Alexander, 2003) is utilized to resolve fibre crossings. Data are simulated

for each entry of the lookup table and the peaks of the PAS function are estimated for

each simulated dataset. The mean sharpness of each peak, evaluated by the trace of the

peak Hessian, is used to estimate the standard deviation of the -assumed as- normally

distributed orientation. In (Seunarine et al., 2007), a Bingham distribution is used for

the orientation estimates, obtained as the peaks of the ODF or PAS function, and the

anisotropy of the peak is mapped to the distribution parameters. The peak anisotropy

is calculated from the eigenvalues of the peak Hessian matrix and its consideration ac-

counts for fanning and bending structures. It should be pointed out that a common

requirement for all the above calibration methods is that an estimate of the SNR of the

acquired data is needed to drive the simulations.

4.2 Global tractography approaches

A drawback of probabilistic tractography approaches is that the probabilistic index of

connectivity decreases with distance from the seed point, due to the cumulative effect

of the uncertainties in propagation (Parker et al., 2003). Furthermore, since they are

streamline-based, they suffer from additive dispersion error caused by local, noise-

induced artifacts.

Global tractography approaches try to overcome these limitations by a) providing

indices of connectivity that are not inherently distance-dependent and b) increasing

immunity against noise. The latter is achieved by finding the optimal path between
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two voxels, according to a global property that contains information along the whole

tract; rather than following orientation estimates in a locally greedy sense. Contrary

to streamlines, the reconstructed paths are not necessarily tangent at all points to the

orientation vector field. However, they satisfy optimally the global criterion, compared

to any other path linking the two voxels of interest (Behrens and Jbabdi, 2009).

Towards this direction, Jbabdi et al (Jbabdi et al., 2007) have developed a global

Bayesian model to derive the posterior probability of connections between two regions

of interest (ROIs). All possible fibre paths between the two ROIs are represented by

piecewise cubic splines, each defined by a set of control points. Sampling from the

posterior of the paths is then equivalent to sampling from the posterior of the control

points. The posterior distribution of the paths depends on local diffusion properties,

estimated using Behren’s ball and stick model (Behrens et al., 2003), and also on prior

knowledge of existing connectivity between the two ROIs. The path trajectories are

compatible with the local fibre orientations in regions with low uncertainty estimates.

In regions with high uncertainty, the global connectivity information constrains the

local parameter estimation and affects the path sampling. Even if the framework as-

sumes a single fibre bundle connecting the ROI pair, it is promising for tasks such as

connectivity-based tissue parcellation.

Front evolution tractography

Front evolution techniques were amongst the first global approaches. Fast marching

tractography has been applied to DTI data (Parker et al., 2002) and propagates a front

from a seed towards neighbouring voxels. The speed of propagation vij between voxels

i and j is maximum when the local fibre orientations e1 are collinear with the normal to

the front n and minimum when the orientations are perpendicular to the normal front

or to each other, as defined in (Parker et al., 2002):

vij(n) =
1

1−min (|e1(i) · n| , |e1(j) · n| , |e1(i) · e1(j)|) . (4.3)

The front expands from the seed neighbours to the next neighbouring nodes with

speeds determined by the local fibre orientations. As the front propagates, a time of

front arrival can be associated with each visited voxel. Once all image voxels have been
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traversed by the front, paths of connection can be obtained going backwards in the map

of front arrival times. Starting from an arbitrary voxel, a gradient descent algorithm can

find the fastest route back to the seed. A connectivity index can be associated with each

path, representing either the weakest link along the path or the agreement between the

path tangents and the underlying vector orientation field.

The fast marching algorithm (Sethian, 1996) governs front propagation. Three sets

of voxels are defined, voxels already visited by the front, voxels lying just outside the

front (the narrow band) and the remaining voxels, as shown in Fig. 4.5. Members of

the narrow band are candidates for inclusion in the front, which propagates in each

step into the voxel with the smallest arrival time. As mentioned before, earliest arrival

times are expected where orientational coherence is high, i.e. in white matter tracts.

Fig. 4.5 shows an example of the front arrival time map obtained after seeding in the

genu of the corpus callosum.

Figure 4.5: Left: The fast marching algorithm divides available voxels in three sets,
the ones already visited by the front (dark grey), the narrow band (light grey) and
the away voxels (white). Propagation occurs from a front voxel to a narrow band
voxel, which then is also included in the front. Right: An axial slice of the arrival
time map obtained with fast marching tractography, after seeding in the genu of the
corpus callosum (FA threshold=0.15). Early arrival times occur mainly within the
genu.

Fast marching tractography has been found promising in reconstructing known
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anatomical connections, using DTI to get fibre orientation estimates (Parker et al., 2002).

Branching pathways are inherently considered by the algorithm, due to front propaga-

tion towards all directions. To deal with crossing configurations, different propagation

speed functions have been employed. In (Staempfli et al., 2006), voxels containing

crossings are identified in DTI data using Westin’s planar index (Westin et al., 2002).

When the speed value to a crossing voxel needs to be calculated, a modified version

of Eq. (4.3) is used, with the third eigenvector of the diffusion tensor rather than its

principal eigenvector. The latter in crossing regions points anywhere within the cross-

ing plane, while the former is normal to that plane. Terms, such as 1− |e1(i) · e3(j)|
can assess collinearity between the principal eigenvector of voxel i and the crossing

plane in voxel j. In a similar attempt to resolve crossings in Q-ball images, Campbell

et al (Campbell et al., 2005) utilizes the diffusion ODFs as speed functions. The front

propagation speed along a direction n is evaluated as a normalized ODF value along

n.

Contrary to voxel-to-voxel propagation utilized in fast marching, a front evolution

method that allows continuous propagation in both orientational and spatial fields is

presented in (Tournier et al., 2003). An empirical, DTI-derived orientation distribution

function is used to drive the propagation. In an iterative fashion, child fronts are gener-

ated by stepping away from parent points along the orientations of highest probability.

These child fronts are merged to form a surface from which new child fronts will be

generated.

Within a different framework, Jackowski et al (Jackowski et al., 2005) solve the

anisotropic front propagation equation:

‖∇T(x)‖ · v(x,∇T) = 1 , (4.4)

with T being the front arrival time at point x and v the anisotropic propagation speed.

The equation is solved numerically for T, using an iterative algorithm. The ADC value

(nT · D ·n), obtained from the diffusion tensor, is weighted by the FA value and is used

as a propagation speed along direction n. In (Fletcher et al., 2007), front propagation is

seeded individually from two regions of interest to study the connectivity of the ROI

pair. The propagation equation (4.4) is solved twice, once per seed ROI, using diffu-
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sion tensor-derived ODFs (i.e. functions of the inverse diffusion tensor) as propagation

speeds. For each image voxel x, the sum of the two arrival times obtained from the

two propagations is used as the total minimal cost of the path between the two ROIs,

passing through x.

Graph-based tractography

In more recent tractography studies, a weighted graph representation of the image

has been utilized (Iturria-Medina et al., 2007; Lifshits et al., 2009; Zalesky, 2008). Each

image voxel becomes a node in the graph and there are arcs connecting pairs of neigh-

bouring voxels. Arcs are assigned weights, that can be representative of any type of

tissue structural information, available in the two connected voxels. Anatomical paths

are then defined as chains with successive elements being neighbouring voxels. The

weights of the arcs comprising a path are used to determine the path strength. The

strongest path between any image voxel and a seed can then be identified using algo-

rithms that search the image graph exhaustively. The strength of this strongest path (or

functions of it) is treated as a relative connectivity index. Using this graph representa-

tion, the tractography task is formulated as a "shortest path" problem (Cormen et al.,

2002; Dijkstra, 1959), which can be solved very efficiently and fast.

The graph-based methods found in the literature differ mainly in the way the arc

weights are determined. The flexibility in adjusting the weights is another advantage of

the these methods. In (Zalesky, 2008), the Bayesian framework of (Friman et al., 2006)

is employed to estimate within voxel the posterior distribution of the fibre orientation.

This distribution is then used to define pseudo-probability terms of observing diffusion

from a voxel A to a neighbouring voxel B and vice versa. The arc weights are functions

of these terms. In (Iturria-Medina et al., 2007), weights are functions of both diffusivity

and structural terms. The pseudo-probabilities of diffusion between two neighbouring

voxels are determined using the diffusion orientation distribution functions (ODFs).

The structural terms reflect the probability of two neighbouring voxels belonging to the

same tissue type and can be obtained from anatomical image modalities, such as T1-

weighted images. In (Lifshits et al., 2009), random diffusion displacements are drawn

from the Gaussian diffusion propagator obtained from DTI. Displacements start from

the centre of a voxel i and last a specific diffusion time. Each displacement is grouped
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to the neighbouring voxel j, for which the angle between the displacement vector and

the vector connecting the centres of i and j is minimum. The fraction of displacements

ending up at j define a weight for the i to j transition.

Global energy minimization tractography

A different global framework is presented in (Kreher et al., 2008a), where all neuronal

pathways and the signal from the whole brain volume are considered simultaneously.

Each tract is represented as a chain of cylinders, whose position, length and orienta-

tion can change. The method tries to find the set of cylinders that best approximate the

underlying white matter bundles. This is achieved by minimizing an energy function,

mimicking the polymerization process through which chains of monomers are created

in an energetically-favourable way. The energy function depicts a) how well the DW

data can be explained by a configuration of cylinders and b) how anatomically plausi-

ble the cylinder configuration is, considering that fibre bundles should be smooth and

continuous. The process starts with a random configuration and the signal obtained

from the cylinders, within a voxel, is simulated via a multi-tensor model. The cylin-

ders are then iteratively adjusted to minimize the difference between the simulated

and the measured signal and also fulfil the geometric requirements. Despite the very

promising results, the extremely high computation time, the large number of parame-

ters to set and the sensitivity of the results to these parameters are drawbacks of this

framework.

A similar approach is presented in (Fillard et al., 2009). White matter tracts are

represented as chains of short fibre segments, whose position, orientation and quantity

can change. An optimal configuration of the segments is obtained by iteratively mini-

mizing an energy potential, such that chains assimilate to fibres. The potential function

encourages segments to align with the principal fibre orientations, as depicted by DW-

MRI, and to form long chains of low curvature. It further prevents a chain to end

within WM, by increasing the number of segments where necessary. Obtaining a con-

figuration that is optimized across the whole brain allows all tracts to be reconstructed

simultaneously.
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4.3 Diffusion simulation tractography

Since WM tracking effectively reconstructs the diffusing paths of water molecules,

methods that simulate the diffusion of water molecules within the brain tissue or di-

rectly solve Fick’s second law have been developed.

In (Hagmann et al., 2003; Koch et al., 2002), random walk models are used with DTI

data to simulate Brownian motion. Trajectories are generated as sequences of jumps.

The direction of each jump is suggested by the local diffusive properties. In (Koch

et al., 2002), transitions are allowed between the centres of neighbouring voxels. The

probability of each jump is representative of the apparent diffusion coefficient along the

direction of the vector connecting the voxel centres. Many random walks are generated

from a seed and the number of times a voxel is traversed defines its index of connec-

tivity to the seed. In (Hagmann et al., 2003), the direction of each jump is determined

by the deflection D · r of a random orientation r, chosen from a uniform distribution

over the unit hemisphere (such that forward jumps occur), by the diffusion tensor D.

The technique resembles tensor deflection tractography, but the incorporation of the

random variable r adds to it a probabilistic context. From a single seed, NR trajectories

can be generated and an index of connectivity can be computed.

In (Batchelor et al., 2001), the diffusion equation is solved within WM through the

whole brain volume using a finite element approach. The anisotropic version of the

diffusion equation is:
dP

dt
= ∇ · (D∇P) , (4.5)

with the tensor D at different spatial locations being estimated from DTI data and

initial conditions P(0)=1 at the seed and 0 elsewhere. This equation is solved for P.

An isotropic version of Eq. (4.5) is also solved, assuming constant isotropic diffusion

through the whole brain (D = I). The ratio of the two solutions Paniso/Piso incorporates

the effect of tissue structure and is used as an index of connectivity.

Successive diffusion simulations over the entire brain, starting from a seed, are per-

formed in (Kang et al., 2005). The diffusion equation is solved with D being estimated

from DTI data, in order to determine propagation fronts. A predefined threshold on

the solution P is used to divide voxels in "zero" and "non-zero" concentration. A front

is defined using the latter voxels. A subset of the front voxels become new roots from
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where the diffusion equation is again solved to generate new fronts. The subset is cho-

sen based on the distance travelled (the higher the diffusion, the larger the distance

traversed from a root and the more probable the connection will be), the fibre orienta-

tion and the anisotropy of the front voxels. Once all voxels are visited by a front, white

matter tracts can be reconstructed in a backward fashion.

Tractography by simulating fluid flow through a pressure tensor field is performed

in (Hageman et al., 2009). The Navier-Stokes equation is solved using a finite element

approach, with D being used as a pressure tensor. A viscosity term is present in the

equation. Viscosity increases and slows down propagation when low anisotropy or

low orientational coherence across a neighbourhood is encountered. The solution is a

fluid velocity vector field. The most likely connection path between two regions is the

path that maximizes a function of the magnitude of the velocity and its gradient.

Many of the methods above, tackle limitations of streamline tractography, such as

resolving fibre crossing (Hageman et al., 2009) and branching (Batchelor et al., 2001;

Hageman et al., 2009; Kang et al., 2005) using DTI data. However, solving a partial

differential equation using a finite element approach increases execution time consid-

erably. Furthermore, it is not always straightforward with these approaches to obtain

a connectivity map across the whole brain volume (Hageman et al., 2009; Kang et al.,

2005), and there is usually a large number of parameters and thresholds to set.
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5
A regularized two-tensor model for resolving

fibre crossings

Overview

Fibre crossing configurations cannot be resolved by Diffusion Tensor Imaging (DTI), as

has been shown in the previous chapters. Given that routine use of high angular reso-

lution diffusion imaging (HARDI) is still tentative, a regularized two-tensor model to

resolve fibre crossings from conventional DTI datasets is presented. To overcome the

problems of fitting multiple tensors, a geometrically constrained model that exploits

the planar DTI diffusion profile in regions with fibre crossings is utilized. A regu-

larization scheme is applied to the estimates of this model to reduce noise artefacts,

which can be significant due to the relatively low number of acquired images. A set

of basis directions is used to convert the two tensor model to many models of lower

dimensionality. Relaxation labelling is utilized to select from amongst these models

those that preserve continuity of orientations across neighbours. Spatial regularization

improves the orientation estimates of the two-tensor model in simulations. Crossing
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orientation estimates in human data, acquired in less than 6 minutes, agree well with

a-priori anatomical knowledge. Apart from orientations, revised fractional anisotropy

and mean diffusivity indices are computed.

Contributions of this chapter

• The geometrically constrained two-tensor model of (Peled et al., 2006) is derived

and described in detail.

• Regularization of orientation estimates using relaxation labelling is presented. A

hybrid minimization approach is also introduced, suitable for reducing the non-

linear dimensionality of the two-tensor model fitting.

• Two different methods are presented for regularizing the model selection mask.

This identifies voxels where the two tensor model should be fitted.

• Results are shown on simulated and human data. Resolved crossing orientations

in regions, where a-priori anatomical knowledge exists, agree well with expected

orientations.

• The global effect of regularization is shown with tractography. The regularized

approach was successful in tracking lateral callosal tracts using conventional DTI

data, while both DTI and Q-ball imaging failed.

Publications

Contributions from this chapter have appeared in the following:

• S. N. Sotiropoulos, C. R. Tench, L. Bai, P. S. Morgan, D. P. Auer and C. S. Constan-

tinescu. A regularised two-tensor model fit to low angular resolution diffusion

images, Proceedings of the ISMRM Annual Meeting, p. 1861, Toronto, Canada, May

2008.

• S. N. Sotiropoulos, L. Bai, P. S. Morgan, D. P. Auer, C. S. Constantinescu and C.

R. Tench. A regularized two-tensor model fit to low angular resolution diffusion

images using basis directions, Journal of Magnetic Resonance Imaging, 28:199-209,

2008.
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5.1 Introduction

Despite its potential, the single tensor DTI model (Basser et al., 1994a) cannot de-

scribe diffusion profiles that arise from non-coherent fibres coexisting in the same voxel

(Alexander et al., 2001). In cases of fibres crossing, DTI wrongly predicts the orientation

of fibres and also underestimates anisotropy (Frank, 2001).

To overcome the limitations of the single tensor model, many different methods

have been proposed, as presented in detail in Chapter 3. However, most of them have

illustrated results on data acquired with protocols that are non-applicable in clinical

practice. Diffusion spectrum imaging requires the measurements on a large 3D Carte-

sian lattice (Wedeen et al., 2005). HARDI-based methods, including Q-ball imaging

(Tuch, 2004), multi-tensor models (Behrens et al., 2007; Kreher et al., 2005; Leow et al.,

2009; Tuch et al., 2002) and spherical deconvolution (Anderson, 2005; Dell’Acqua et al.,

2007; Tournier et al., 2004), require longer acquisition times than conventional DTI for

a full brain coverage. Many sampling directions (usually at least 60) and multiple re-

peats to achieve high enough SNR are usually employed by these methods. The higher

b value utilized in some cases increases sensitivity to subject motion, which is another

undesirable feature for a clinical setting. It should be pointed out that the constrained

spherical deconvolution (Tournier et al., 2007) has good results when applied to rela-

tively low angular resolution DW data. However, only orientational information can

be obtained with this method.

To remedy some of the above problems, a geometrically constrained two-tensor

model for resolving fibre crossings was introduced in (Peled et al., 2006). The obser-

vation that regions with two crossing fibres have a planar DTI diffusion profile and

that fibres lie in this plane (Wiegell et al., 2000) was utilized. Using information pro-

vided by the single tensor DTI estimates, the model has only four unknown parameters

and, thus, requires a small number of measurements. In (Peled et al., 2006) crossings

were resolved using imaging protocols of 31 diffusion gradient directions and low b

values (750 s/mm2). A regularization scheme for this model will be introduced here,

to decrease sensitivity to noise artefacts that can be significant due to the low angular

sampling.

Regularization schemes have been used before to reduce random effects of ex-
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perimental noise, as well as numerical errors that might arise in the fitting procedure

(Coulon et al., 2004; Poupon et al., 2000; Tench et al., 2002). Furthermore, sampling

requirements can be reduced and accuracy improved when the a priori knowledge of

diffusion continuity across voxels is imposed. The principal eigenvector of the DTI

model (Poupon et al., 2000; Tench et al., 2002), all three orthogonal DTI eigenvectors

(Tschumperle and Deriche, 2002) and the principal eigenvector and all diffusivities of

the single tensor model (Coulon et al., 2004) have been regularized previously.

In this chapter, spatial regularization of the orientation estimates obtained from

the simplified two-tensor model of (Peled et al., 2006) is performed. Using a basis set of

directions, the problem of fitting a multi-parameter two-tensor model is transformed

to solving many models of lower dimensionality. Relaxation labelling (Rosenfeld et al.,

1976; Savadjiev et al., 2006; Tench et al., 2002) is then utilized to choose from amongst

these models the ones that preserve continuity of fibre orientations in crossing regions.

Revised anisotropy and mean diffusivity measures are computed using the parameters

of the two-tensor model. The method is tested using numerical simulations, as well as

in-vivo DW images acquired in less than 6 minutes.

5.2 A geometrically constrained two-tensor model

Assuming that up to two fibre populations coexist within a voxel and that there is no

diffusion exchange between them, the diffusion signal can be modelled as a mixture of

two diffusion tensors (Tuch et al., 2002):

S(gk) ≡ Sk = S0

[

f exp(−bgT
kDagk) + (1− f ) exp(−bgT

kDbgk)
]

, (5.1)

where Sk, k = 1...M is the signal obtained after the application of a diffusion-sensitizing

gradient of b value and direction gk, f ∈ [0, 1] is the volume fraction of the diffusion

tensorDa and S0 the intensity of the non-diffusion-weighted image. TensorDi (i = a, b)

is assumed to have eigenvalues λi1, λi2 and λi3 and respective eigenvectors ei1, ei2 and

ei3.

The above model has thirteen free parameters. In (Peled et al., 2006), the following

phenomenological assumptions are made to reduce this number:
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a) In crossing regions, the tensorsDa andDb are assumed to be cylindrically symmetric

(λa2 = λa3 and λb2 = λb3).

b) Both tensors are assumed to share the same eigenvalues and their secondary eigen-

value is set equal to λ3, the third eigenvalue of the DTI tensor. So: λa1 = λb1 = λab1

and λa2 = λa3 = λb2 = λb3 = λ3.

c) The principal orientations of Da and Db are assumed to lie on the plane spanned by

the principal e1 and secondary e2 eigenvectors of the DTI tensor (see Fig. 3.1). This is

motivated by the observation that two-fibre crossings are characterized by oblate (pla-

nar) DTI profiles (Tuch et al., 2002; Wiegell et al., 2000), i.e. the eigenvalues of the DTI

tensor are λ1 ≈ λ2 ≫ λ3, and the crossing occurs on this plane.

In the coordinate system defined by the DTI eigenvectors [e1, e2, e3], the two ten-

sors can be described as:

D̃a =











da1 da3 0

da3 da2 0

0 0 λ3











and D̃b =











db1 db3 0

db3 db2 0

0 0 λ3











, (5.2)

since the third eigenvectors ẽa3 and ẽb3 are aligned with e3. Furthermore, the principal

eigenvector of each tensor in this coordinate system can be described using one angle

relative to e1 (Fig. 5.1), i.e. ẽa1 = [cos φa sin φa 0]T and ẽb1 = [cos φb sin φb 0]T. The sec-

ondary eigenvectors will be ẽa2 = [cos(φa + π/2) sin(φa + π/2) 0]T = [− sin φa cos φa

0]T and ẽb2 = [− sin φb cos φb 0]T. Then, for each tensor i = a, b, we can apply its

eigen-decomposition relationship to get:

D̃i = ẼiLiẼ
T
i ⇒ D̃i =











cos φi − sin φi 0

sin φi cos φi 0

0 0 1





















λab1 0 0

0 λ3 0

0 0 λ3





















cos φi sin φi 0

− sin φi cos φi 0

0 0 1











.

(5.3)

From Eqs. (5.2), (5.3), we obtain for i = a, b:

di1 = λab1 − di3 tan φi

di2 = λab1 − di3/ tan φi (5.4)

di3 = (λab1 − λ3) sin φi cos φi .
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Figure 5.1: Schematic showing the principal orientations ea1 and eb1 of the two
tensors Da and Db respectively, lying on the plane de�ned by the principal e1 and
secondary e2 eigenvector of the DTI tensor (or the plane that is normal to DTI e3).

Since [e1, e2, e3] has been used as the coordinate system of reference, the gradi-

ent directions gk are also transformed into this coordinate system. The new gradient

vectors g̃k are:

g̃k = Rgk, with R =











eT
1

eT
2

eT
3











. (5.5)

Then, the geometrically constrained two-tensor model of (Peled et al., 2006) is

given by:

Sk = S0

[

f exp(−bg̃T
k D̃ag̃k) + (1− f ) exp(−bg̃T

k D̃bg̃k)
]

. (5.6)

This model has only four parameters: the volume fraction f of the first tract, the com-

mon principal diffusivity in both tracts λab1, and the angles φa and φb, relative to the

principal eigenvector e1 of the DTI tensor, in the plane spanned by e1 and e2 of the two

tensors. The parameters can be estimated by minimizing the sum of squared residuals

E = ∑k(Sk − S′k)
2, where S′k is the model predicted and Sk the measured signal for the

kth diffusion-sensitizing gradient. Since the problem is non-linear, Nelder and Mead’s

downhill simplex algorithm (Press et al., 1992) was used here to minimize E. It should

be pointed out that the above model provides tensor estimates in the transformed co-

ordinate system. These tensors should be reoriented to the scanner coordinate system,

by multiplying their eigenvectors with R−1, i.e. ea1 = R−1ẽa1.

Similar to all multi-tensor models, a model selection problem arises. Westin’s pla-

nar index cp (Westin et al., 2002), calculated from the eigenvalues of the DTI tensor was
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used in (Peled et al., 2006) to identify voxels with an oblate diffusion profile. The more

perpendicular a crossing and the more equal the volume fractions of the two crossing

populations, the more oblate the diffusion profile and the more suitable the model will

be. Thus, high values of cp, in general encourage fitting of the two-tensor model. In

(Peled et al., 2006) a minimum threshold of cp > 0.2 was identified using simulations,

as fitting the model to configurations with smaller cp values, produced estimates with

larger than 10o orientation errors.

5.3 Spatial regularization using relaxation labelling

Noise artefacts and potential inaccuracies of any model in reflecting the physical re-

ality can introduce errors in the estimates obtained individually in each voxel. The

geometrically-constrained two-tensor model is no exception; furthermore, its non-linear

nature makes the identification of an estimate that is a global minimum of the objec-

tive function E more difficult. However, continuity of diffusive processes across voxels

requires that the dominant diffusion orientations are preserved in highly structured

media, such as white matter tracts. This low curvature assumption can be imposed

using a spatial regularization scheme on the orientation estimates across neighbour-

hoods of voxels. Such a scheme ensures that local artefacts are corrected, by requiring

that local estimates are commensurate with their adjacent ones.

Relaxation labelling (RL) has been employed here for this purpose. Introduced by

Rosenfeld et al (Rosenfeld et al., 1976), RL is an iterative method that assigns to a voxel

(object in general) i one of L predefined labels. The assignment of a label l = 1...L is

characterized by the weight Pi(l), which reflects how likely is for label l to be the most

appropriate amongst all L labels for voxel i, given the data. It is based on the support

dPi(l) that a label l gets from all voxels belonging to a neighbourhood of i, F
neigh
i . The

support function reflects the regularity constraint to be preserved. Using the support

values, the weights P can be iteratively modified until convergence. The weights at

each iteration n + 1, are:

Pn+1
i (l) =

Pn
i (l)[1 + dPn

i (l)]
L

∑
q=1

Pn
i (q)[1 + dPn

i (q)]

, l = 1...L . (5.7)
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The initial weights P0
i (l) define a starting point based on the knowledge prior to

regularization. In each voxel i, the label with the highest weight is assumed to be the

dominant during iteration n.

Regularizing the orientation vector field

Since it is expected that the fibre orientations are slowly changing across neighbouring

voxels, any abrupt change is assumed to be a noise artefact. Therefore, relaxation la-

belling can be applied to the estimated orientations to preserve directional continuity.

When using the geometrically-constrained two-tensor model, two orientations will be

estimated in crossing regions. For the remaining voxels, the diffusion tensor model

(Basser et al., 1994a) will estimate a single orientation. Given that fitting the non-linear

two-tensor model is more difficult than the linear DTI model, RL will be applied in

voxels containing crossings to improve the estimates of the two-tensor model.

Labels can be chosen as pairs of orientations lαβ = {uα, uβ}, α, β = 1...NB, with u

being unit vectors chosen from a set Φ of NB basis directions. Using relaxation labelling,

the orientation pair that is most compatible with the orientations in neighbouring vox-

els will be chosen, as shown in Fig. 5.2.

Figure 5.2: Schematic showing the spatial regularization of orientations in crossing
regions. Orientation pairs that are most compatible with the neighbouring orienta-
tions are selected.

The geometrically-constrained model defines orientations only in the 2D plane,

within which crossing occurs. The basis directions can therefore be restricted to a plane

and reduced to a set of NB basis angles Φ = [−π/2,−π/2 + δω,−π/2 + 2δω, ...π/2)

with 0 < δω < π/2 defining the fineness of the set. The labels will then be lαβ =
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{φα, φβ} with α = 1...NB and β = α + 1...NB, giving in total L = (N2
B − NB)/2 la-

bels. The above notation avoids pairs of equal angles and also considers only once

the identical lαβ and lβα labels. The orientations corresponding to a label lαβ will be

ũα = [cos φα sin φα 0]T and ũβ = [cos φβ sin φβ 0]T in the local coordinate system

[e1, e2, e3] of a voxel or R−1ũα and R−1ũβ in the scanner’s coordinate system (Eq. (5.5)).

A low fibre curvature requirement can then be imposed within a neighbourhood

using a support function that promotes slow changes in these two planar orientations.

Such a function for a voxel i and a label l is defined below:

dPn
i (l) = ∑

j∈F
neigh
i

1

dij
Tn

ij (l) (5.8)

Tn
ij (l) =



























exp

(

−
(

min[Θ(ej, eial), Θ(ej, eibl)]√
2σ3

)2
)

, if j is not a planar neighbour

exp



−
(

∆φl − ∆φn
j√

2σ1

)2

−
(

Θ(vil , vn
j )√

2σ2

)2


 , if j is a planar neighbour ,

where dij is the Euclidean distance of the centres of voxels i and j, and ej is the prin-

cipal DTI eigenvector of neighbour j ∈ F
neigh
i . ∆φl is the angle separation between the

orientations of label l, vil , eial and eibl are respectively the mean vector of orientations

and the two orientations of label l rotated back to scanner’s coordinate system from

the coordinate system [e1, e2, e3] of voxel i. ∆φn
j and vn

j are calculated at each itera-

tion and represent the angle separation and the mean orientation vector of the label

with the highest weight in neighbouring voxel j at the nth iteration; vn
j is rotated to

the scanner’s coordinate system. Finally, function Θ(u, v) computes the minimum an-

gle subtended by any combination of vectors u and -u with v and -v. It is defined as

Θ(u, v) = min[acos(u · v), π − acos(u · v)].

The above support function is a Gaussian to which every neighbouring voxel

j ∈ F
neigh
i contributes. When j does not have a planar DTI profile, then a single ten-

sor is fitted to it, otherwise the two-tensor model is applied. In the former case, the

contribution is peaked when the principal DTI eigenvector of j is equal to any of the

two orientations of label l in i. In the latter case, a maximum contribution is achieved

when the two dominant orientations of j are equal to the two orientations of label l. To

test that we need four comparisons, since the orientation pairs are not sorted. A more
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efficient way is shown in Eq. (5.8), where the similarity in the angle separation and

the mean vector of the two orientations is instead required to be preserved between

neighbours.

Parameters σ1, σ2 and σ3 determine how much variation is allowed in the neigh-

bourhood. We set σ3 = 10o = 0.1745 rads to define variation between neighbouring

orientations. Therefore, the allowed variation in the mean orientation will be σ2 = σ3 =

10o = 0.1745 rads and in the angle separation σ1 = 2σ3 = 20o = 0.349 rads.

The initial weights P0
i (l) for a voxel i and label l are calculated from the residuals

of the two-tensor model fit. The model described by Eq. (5.6) is fitted but with fixed φa

and φb, given by the corresponding basis angles of the label l (thus only two parameters

are unknown). Fitting of all L labels gives L residuals Eil for voxel i. The smaller the

Eil , the higher the respective weight of the label. So P0
i (l) = 1/(Z · Eil), with Z being a

normalization constant so that the sum of P0
i (l) over all L labels is unit.

Since fitting L non-linear models in all voxels with oblate DTI diffusion profile can

be computationally expensive, a simpler approach is employed. This is based on the

observation that out of the two free parameters f and λab1, the fraction f is linearly

dependent to the measurements, when keeping the other parameter fixed. Therefore,

for a given estimate of λab1, an estimate of f can be obtained using a linear least squares

scheme. Eventually, L models with non-linear dependence only on the parameter λab1

are fitted using the hybrid approach described below.

Fitting basis two-tensor models using 1D non-linear optimization

The geometrically-constrained two-tensor model (Eq. (5.6)) can be rewritten as:

Sk = S0

[

f
(

exp(−bg̃T
k D̃ag̃k)− exp(−bg̃T

k D̃bg̃k)
)

+ exp(−bg̃T
k D̃bg̃k)

]

=⇒

Sk = S0 [ f (cka − ckb) + ckb] , (5.9)

with cka = exp(−bg̃T
k D̃ag̃k) and ckb = exp(−bg̃T

k D̃bg̃k) depending on the parameters

φa, φb and λab1. The angles are fixed to φα and φβ of the label lαβ. If we keep constant

the λab1, then the volume fraction f is linearly dependent on the measurements. Thus,

its value that minimizes the sum of squared residuals E can be obtained using linear
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least squares on Eq. (5.9). Having a design matrix with 1 column and elements Ak1 =

cka − ckb and observations vector with elements Sk/S0 − ckb, the least squares estimate

of f will be:

f =

M

∑
k=1

Sk(cka − ckb)− S0

M

∑
k=1

ckb(cka − ckb)

S0

M

∑
k=1

(cka − ckb)
2

. (5.10)

For a given least squares estimate of f , the parameter λab1 can be estimated using

a 1D non-linear minimization method. Brent’s method (Press et al., 1992) has been

employed to search for the value of λab1 that minimizes the sum of squared residuals

E. The new eigenvalue estimate will give a new estimate for the volume fraction, which

will give a new estimate for λab1 and so forth. This iterative process is continued until

convergence is achieved (relative error of less than 10−3 in both f and λab1). As an initial

condition used in the first iteration, we set λab1 = λ1, the DTI principal eigenvalue.

Figure 5.3: Initial weights P0(lαβ) of di�erent basis models �tted using the 1D
hybrid approach, for a 90o (left) and a 60o (right) crossing. True orientations are
shown with blue lines and the angles relative to the DTI principal eigenvector e1 are
indicated. These angles are predicted well by the label of highest weight. Simulations
were noise-free.

This hybrid minimization approach reduces L 2D non-linear regressions to L 1D,
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which are faster to solve. Examples of fitting all the L basis models and their residuals

El are presented in Fig. 5.3. A 90o and a 60o crossing have been simulated using the

multi-tensor model of Eq. (5.1) (with each tensor having an FA=0.8, a trace of 2.1x10−3

mm2/s and a volume fraction f =0.5). The crossing orientations are indicated by the

blue lines. All L models, chosen from a basis set Φ with δω = 10o, were fitted using

the hybrid approach. For each model, the weight P0(l) was proportional to the in-

verse of value of E achieved after fitting (so a high P0(l) value implied a good fit). We

can observe that in both cases, the highest weight labels, {80o,−10o} and {30o,−30o}
respectively, predict well the crossing orientations. Furthermore, the other labels are

suppressed, having effectively a zero weight, apart from a few that suggest orienta-

tions close to the true ones. Note that, as suggested by the model, the basis angles are

defined relative to the DTI principal eigenvector e1.

5.4 Regularizing the model selection mask

Voxels are classified as planar or non-planar via a model selection procedure. Two

and one tensors are fitted in the planar and non-planar voxels, respectively. In (Peled

et al., 2006), a thresholded planar index (cp>0.2), calculated from the DTI eigenvalues,

was used to identify planar voxels. However, such a procedure is very sensitive to

noise. Thus, regularization was applied on the cp values to increase the robustness

of the model selection mask. Two approaches were tried and described below: a) cp

regularization using relaxation labelling and b) cp non-linear filtering using the edge-

preserving Perona and Malik filter (Perona and Malik, 1990).

Relaxation labelling on cp

The relaxation labelling framework was utilized to regularize the cp model selection

mask. The underlying idea was that voxels surrounded by neighbours with a planar

DTI profile are likely to have a planar DTI profile themselves. Two labels (L = 2) were

defined (planar vs non − planar) for each voxel i with initial weights determined by
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the cp,i value obtained from the DTI model fit:

P0
i (planar) = 0.5 +

cp,i − thresh

cmax
p − thresh

× 0.5

P0
i (non− planar) = 1− P0

i (planar) . (5.11)

According to these equations, voxels with cp = thresh are considered 50% planar, with

this weight increasing as the difference cp − thresh increases. The parameter cmax
p >

thresh controls how fast the weight becomes 1 as cp− thresh goes up, and represents the

maximum cp value. In this study, thresh = 0.2 and cmax
p = 0.4, the latter representing

the 95th percentile of cp values in white matter. For voxels with cp > 0.4, P0
i (planar)

becomes greater than 1 and is thus clipped to 1.

The support function of a label was defined as the sum of the weights of that

label in a 3x3x3 neighbourhood. After iterating, the label with the highest weight was

assigned to a voxel, resulting into a binary model-selection mask.

The above procedure is not specifically designed to preserve edges between cross-

ing regions and regions containing single-fibre configurations. Under these conditions,

contributions from planar and non-planar neighbours compete to define the most ap-

propriate label of a voxel. Thus, an approach that avoids smoothing over edges was

also tried.

Non-linear filtering of cp

The Perona and Malik filter (Perona and Malik, 1990) performs non-linear smoothing in

an iterative way that preserves edges. The evolution of the image intensity I at location

x, is described by:
∂I

∂t
(x) = ∇ · [g(‖∇I(x, t)‖)∇I(x, t)] , (5.12)

with ∇I(x, t) being the spatial gradient of the image intensity at location x and time t.

The conductance function g(·) was set to g(s) = exp[− (s/K)2], as suggested in (Gerig

et al., 1992; Perona and Malik, 1990). Finite spatial differences of the image intensity

were utilized to discretize the above equation, as shown in (Gerig et al., 1992; Perona
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and Malik, 1990):

It+∆t(x) ≈ It(x) + ∆t · ∑
j∈F

neigh
i

[

1

dxj
2

g(|It(j)− It(x)|) (It(j)− It(x))

]

, (5.13)

with j denoting the neighbouring voxels of x and dxj the relative distance between the

centres of voxels x and j. A 3x3x3 neighbourhood was used in 3D (brain data) and

a 3x3x1 neighbourhood in 2D (simulated phantoms). Parameter K was obtained as

the 85th percentile of the gradient amplitudes over the whole image in each iteration

(Gerig et al., 1992; Perona and Malik, 1990). The filter was applied on the cp image,

i.e. I = cp.The initial cp image was convolved with a 3D Gaussian kernel of σ = 1, to

eliminate large gradient amplitudes caused by noise and discriminate between them

and intensity gradients caused by actual edges (Perona and Malik, 1990). The time

steps utilized had the maximum values suggested in (Gerig et al., 1992) (∆t = 0.14 for

2D and ∆t = 0.0682 for 3D).

The above filter iteratively smooths the image, where the gradient magnitude

‖∇I‖ is in the order of K. For much larger gradient values (greater than 2-3 times

K), it assumes that an edge exists and no smoothing occurs. Thus, it can potentially

preserve edges. After applying the filter to the cp image, a threshold of 0.2 was used to

get a binary model selection mask.

5.5 Data and processing

Simulations

Voxels containing two fibre orientations were numerically generated using Eq. (5.1).

Tensors were cylindrically symmetric and had a trace of 2.1x10−3 mm2/s and an FA=0.8,

representative of highly anisotropic regions (Pierpaoli et al., 1996). Thirty-two direc-

tions, uniformly distributed on the surface of a unit sphere (see Appendix), with b=1000

s/mm2 were used to generate the noise-free DW signals.

The regularization scheme was validated using a numerical phantom that con-

tained two crossing circular arcs. The crossing tracts had the afore-mentioned eigen-

values and the volume fraction was 0.5. Zero-mean Gaussian noise was added in
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quadrature, so that the signal to noise ratio (SNR) was equal to the average non-DW

image intensity divided by the standard deviation of noise (Kingsley, 2006a). The

non-regularized geometrically- constrained model and the regularized approach were

compared at different SNR levels and at different number of diffusion-sensitizing direc-

tions. For a given SNR and direction scheme, fifty phantom realizations were obtained,

with the two-tensor model being fitted to voxels identified as planar and a single tensor

model being used for the remaining ones.

In-vivo images

A whole-brain data set was acquired, with local research ethics committee approval,

from a healthy male subject who gave informed consent. Scans were performed using a

single-shot, echo-planar, diffusion-weighted sequence (acquisition matrix 112x112 with

in-plane resolution 2x2 mm2, interpolated during reconstruction to 224x224, TE=60 ms,

TR=9500 ms) in a Philips 3T Achieva clinical imaging system (Philips Medical Sys-

tems, Best, The Netherlands). A parallel imaging factor of 2 was used. Three non-DW

images were acquired and averaged, while diffusion weighting was applied along 32

uniformly distributed directions with b=1000 s/mm2. 52 slices were acquired with a

thickness of 2 mm. Total imaging time was less than 6 minutes.

Images were corrected for eddy current distortion using FSL (Smith et al., 2004).

Brain was extracted using BET (Smith et al., 2004). A binary mask indicating brain vox-

els was then eroded to remove any boundary voxels that survived skull-stripping. A

single tensor model was fitted using a weighted least squares approach (Basser et al.,

1994a). A k-means clustering was then applied to the Mean Diffusivity (MD) image

to classify voxels into three clusters. Regions belonging to the cluster with the high-

est MD were excluded from further analysis, since they were considered cerebrospinal

fluid (CSF). From the other two clusters, which included brain tissue and brain/CSF

interfaces, highly isotropic (FA<0.1) voxels were further excluded. For the remaining

voxels, which were primarily within white matter, the planar index was regularized.

The L 1-parameter two-tensor models were fitted to all planar voxels. Relaxation la-

belling was then used to regularize the two orientations in regions of fibre crossing. A

step size δω = 10o was used for the basis set resulting in NB=18 basis directions and

L=153 labels. Relaxation labelling was stopped after thirty iterations, as simulations

75



CHAPTER 5: A REGULARIZED TWO-TENSOR MODEL FOR RESOLVING FIBRE CROSSINGS

showed that the improvements were mainly obtained within the first ten iterations.

Processing time for the whole brain volume was in the order of 2 hours for a 3.2 GHz

PC.

Once the orientation estimates were computed and regularized, streamline trac-

tography within the multi-tensor field was performed using CAMINO (Cook et al.,

2006). An FA of less than 0.15 and a curvature threshold of 45o were used as stop-

ping criteria. For comparison, tractography using DTI estimates, non-regularized two-

tensor estimates, as well as Q-ball estimates was performed. Q-ball ODFs were recon-

structed using spherical harmonics as basis (Descoteaux et al., 2007; Hess et al., 2006)

(harmonics up to 4th order were fitted).

5.6 Results

Simulations

To test how well the hybrid minimization approach works, it was tried on various

crossing configurations. Estimated fibre orientations are shown in Fig. 5.4, for different

simulated scenarios. No noise was added in these simulations to identify problems

caused by the non-linear model fitting. A basis set with δω = 2.5o was used resulting

to NB=72 basis directions and L=2556 models (labels). All these models were fitted in

each case and the one with the smallest residual error E was chosen. The orientations

of this best model are shown as gray bars and are superimposed with the true orien-

tations. A maximum orientation error of 2.63o and a maximum volume fraction error

of 9% were observed in the low volume fraction ( f = 0.2) configurations, caused by

the discreteness of the basis set and the non-linear fitting procedure. The maximum

error in the principal eigenvalue was 4.4%. Fitting the 4-parameter geometrically con-

strained model in each case (using downhill simplex (Press et al., 1992) with multiple

restarts), gave comparable maximum errors in orientation, volume fraction and princi-

pal eigenvalue of 1.18o, 7.5% and 3.9%, respectively.

The approaches for regularizing the model selection mask were tried in a phan-

tom with two curved, crossing tracts. Fig. 5.5 shows the results obtained using non-

linear smoothing and relaxation labelling on the cp values of a phantom realization at
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Figure 5.4: Estimated orientations (gray bars) using the 1-parameter hybrid min-
imization approach superimposed on true orientations (black lines). Results for
di�erent angle separations (60o-90o) and volume fractions f (0.2-0.5) are shown. In
all cases presented, cp was greater than 0.2.

SNR=10. We can observe that simple thresholding, as performed in (Peled et al., 2006),

induces many false positives compared to the noise-free mask. Both smoothing tech-

niques eliminated most of the noise artefacts and resulted in a mask located within the

crossing region. The non-linear filtering exhibited slightly better behaviour across the

edges and will be therefore used from now on.

The regularization of fibre orientations was then tested against noise, as shown in

Fig. 5.6. For different SNRs, the non-regularized two-tensor model (Peled et al., 2006)

and the regularized approach were compared. Dark gray indicates regions of fibre

crossings, as identified by the model selection procedure, where a two-tensor model

was applied. A thresholded cp mask and a regularized cp mask were utilized for model

selection by the non-regularized and the regularized approaches, respectively. The

smooth orientation change imposed by relaxation labelling is evident and restores the

spatial continuity of orientation estimates in the crossing region, even for low SNR

conditions.

Fig. 5.7 presents the evolution of label weights during regularization. The weights

in a voxel of the phantom’s crossing region (Fig. 5.6) are plotted for different number of

iterations. The SNR was 10 and δω = 10o. As shown in the figure, the dominant label

for that voxel at iteration n=0 was li=(−70o, 10o). However due to noise, the weight

of li was only slightly higher than the weights of other labels. Furthermore, li was
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Figure 5.5: Regularizing the cp-based model selection mask using non-linear �ltering
and relaxation labelling. A crossing was simulated at SNR=10. Both techniques
returned a binary mask, indicating voxels where two tensors should be �tted. The
regularized masks resembled the noise-free one, as opposed to the mask obtained
from simple cp thresholding. The evolution of the masks after n �ltering iterations
is shown. For the non-linear �lter, the raw cp values are also shown at di�erent
iterations. At n=30 both �lters had converged.

not the correct, noise-free label. Imposing the neighbourhood information, allowed the

weight of the correct label lc=(−30o, 40o) to increase after the first iteration of relaxation

labelling. After three iterations lc became the dominant label and li was totally sup-

pressed. Subsequently, the weight of lc increased towards unity, while the weights of

all other labels decreased to zero.
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Figure 5.6: E�ect of regularization on planar index and orientation estimates. A
numerical phantom of two crossing circular arcs was used. The geometrically con-
strained two-tensor model and the regularized two-tensor approach are compared at
various noise levels. Dark gray indicates voxels identi�ed as planar in each case. For
the regularized cases, cp was non-linearly �ltered. Thirty iterations were used for
relaxation labelling, applied to the orientations (δω = 2.5o).
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Figure 5.7: Evolution of label weights during relaxation labelling. A voxel within the
phantom's crossing region (Fig. 5.6) was chosen. The initial label li=(−70o, 10o) is
very sensitive to perturbations, as its weight is slightly higher than the weights
of other labels. Imposing the neighbourhood information, makes another label
lc=(−30o, 40o) dominant and suppresses the others. This is because lc promotes
orientational coherence across the neighbourhood, more than any other label.
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Quantification of improvement due to regularization

A quantitative evaluation of the improvement achieved with regularization is pre-

sented in Fig. 5.8. Monte-Carlo simulations were performed and random noise at

given SNR levels was added to the crossing phantom. For each phantom realization,

three schemes were used, the non-regularized two-tensor model and the regularized

two-tensor approach with step sizes δω = 10o and δω = 2.5o. Errors in orientation, vol-

ume fraction and principal eigenvalue of all voxels identified as planar were averaged.

Whisker plots that show the distribution of these mean errors across fifty phantom re-

alizations are presented. In all cases, the regularized schemes improved the orientation

estimates. Improvements were larger for smaller step sizes. Using the regularized ori-

entation estimates to refit the model to the data, revised estimates for the volume frac-

tion and the principal eigenvalue were obtained. The revised volume fractions were

also improved, while no significant difference was observed for the eigenvalues.

Figure 5.8: Whisker plots of the mean errors across the crossing region of the
phantom in (a) orientation, (b) volume fraction and (c) principal eigenvalue. For
each SNR level, 50 experiments were performed. Results in each SNR case refer
from left to right to the non-regularized two-tensor model, the regularized two-
tensor approach with δω = 10o and the regularized approach with δω = 2.5o. The
lines of each box correspond to the lower quartile, the median and the upper quartile
of a sample, while the whiskers represent the range of the sample.

The effect of regularization on orientation estimates was also assessed against the

number of diffusion-sensitizing directions, at different SNR levels (Fig. 5.9). As before,

the non-regularized two-tensor model was compared with the regularized approach

with step sizes 10o and 2.5o. Uniformly distributed directions were generated on the

surface of a sphere, as described in the Appendix. For each direction scheme and SNR,
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the orientation errors from fifty phantom realizations were averaged. For each real-

ization, the orientation error was the mean across the crossing region. We can observe

that for 15-32 directions, regularization halved orientation errors, while the 24 and 32

direction schemes provided a good compromise between acquisition time (4-6 minutes)

and performance (mean error 5o) for a reasonable SNR of 20. For large SNRs and/or

number of directions the benefit from orientation regularization becomes small.

Figure 5.9: Mean orientation error as a function of the number of di�usion-sensitizing
directions (6-64) and SNR (10-40). For each direction scheme and SNR level, 50
simulations were performed using the crossing phantom. Mean orientation errors
across these simulations were obtained using the non-regularized two-tensor model
(No-RL, black lines), the regularized approach with δω = 10o (RL-10o, light gray
lines) and the regularized approach with δω = 2.5o (RL-2.5o, dark gray lines).
Uniformly distributed directions were produced as described in the Appendix.

In-vivo human data

Fig. 5.10 shows the regularization effect on the cp calculated from in-vivo DW images.

Fig. 5.10b presents a thresholded cp mask (cp>0.2), as suggested in (Peled et al., 2006)

and used by the non-regularized approach. The effect of relaxation labelling and non-

linear smoothing is shown in Fig. 5.10c and 5.10d, respectively. The regularized binary

masks resemble the thresholded cp image, but has fewer discontinuities. Furthermore,

the non-linear smoothing is slightly more conservative at the boundaries.

The orientation estimates obtained from the regularized two-tensor approach were

compared against a-priori anatomical knowledge, in regions known to consist of cross-

ing tracts (Fig. 5.11). The orientations are shown colour-coded, with the colour scheme

shown in Fig. 5.11d. The length of each orientation vector is scaled by the single ten-

sor FA, in regions with one fibre orientation and the FA computed from the revised

eigenvalues of the two-tensor model in crossing regions. In Fig. 5.11a, the superior
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Figure 5.10: E�ect of regularization on planar index cp. (a) Raw cp axial image, (b)
Thresholded cp image (cp>0.2), (c) Binary mask from regularized cp using relaxation
labelling (after 50 iterations), (d) Binary mask from regularized cp using non-linear
smoothing (after 30 iterations)

part of the corpus callosum, with a high medio-lateral and superior-inferior orienta-

tion is resolved along with the cingulum that runs posterior-anteriorly. This is an ap-

parent crossing, caused by the limited MRI resolution. In Fig. 5.11b, a crossing at the

centrum semiovale is resolved. The corona radiata fibres that run primarily inferior-

superiorly cross with longitudinal fasciculi. In the same region, corona radiata crosses

with the corpus callosum, as indicated in Fig. 5.11c. Finally, the crossing between the

corticospinal tract and the transverse pontine fibres that have a strong medio-lateral

orientation is presented in 5.11d. In all cases, the regularized approach has returned

orientations that change smoothly across the crossing region.

To test the global effect of regularization, streamline tractography was performed.

The tracking algorithm was seeded from two different regions of interest (ROIs), one

within the anterior body of the corpus callosum (Fig. 5.12) and the other lying in the

internal capsule of the right hemisphere (Fig. 5.13). Orientation estimates from four dif-

ferent techniques were utilized, with tractography being seeded from the same ROIs in

all cases. For the corpus callosum, tractography with DTI estimates resolved only me-

dial tracts, similar to tractography using Q-ball imaging estimates, which was not able

to resolve any crossings due to the low b-value and low angular resolution of the data.

On the contrary, both two-tensor approaches reconstructed tracts through the centrum

semiovale and exhibited greater fanning of the callosal fibres to the cortex. However,

the regularized approach gave much smoother results and larger lateral coverage, com-

pared to the non-regularized model. It did not propagate in the corona radiata and did

not produce any curves within the inferior fronto-occipital fasciculus (see sagittal per-
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Figure 5.11: Colour-coded orientations resolved from the regularized two-tensor
model. In each case, a T2-weighted image is shown on the left, along with a colour-
coded image of the principal DTI eigenvector. The colour-coding scheme is shown on
the surface of a sphere in (d). The region delineated with the box is shown magni�ed
on the right with the regularized two-tensor orientation estimates. (a) Crossing
between the superior corpus callosum and the cingulum. (b) Crossing between the
corona radiata and longitudinal fasciculi at the centrum semiovale. (c) Crossing
between the corona radiata and the corpus callosum at the centrum semiovale. (d)
Crossing between the corticospinal tract and the the transverse pontine �bres at the
pons. Orientations are superimposed on the single tensor FA, in regions with one
�bre orientation and the FA computed from the revised eigenvalues of the two-tensor
model in crossing regions.

spective); these artefacts being evident for the non-regularized approach.

For the second ROI, DTI could not resolve the crossing between the corticospinal

tract with the transverse pontine fibres. Thus, erroneous connections were identified

to the contralateral hemishpere. Tractography with Q-ball and non-regularized two-

tensor orientations had also similar problems, they exhibited however greater fanning

to the cortex. The regularized two-tensor model resolved the crossing at the pons in a

better way and also allowed greater fanning to the cortex, compared to DTI.

Apart from orientations, the two-tensor model provides revised eigenvalues in

crossing regions. Fig. 5.14 shows revised fractional anisotropy (FA) and mean diffusiv-

ity (MD) images calculated from the new eigenvalue estimates. More specifically, both

FA and MD were equal to their DTI values in non-planar regions, while the new prin-
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Figure 5.12: Streamline tractography using orientation estimates of four di�erent
techniques (from left to right): DTI, Q-ball, non-regularized two-tensor model, regu-
larized two-tensor approach. A seed ROI in the anterior body of the corpus callosum
is used. Streamlines are superimposed on DTI FA maps and shown in both coronal
(top) and sagittal (bottom) perspective.

Figure 5.13: Streamline tractography using orientation estimates of four di�erent
techniques (from left to right): DTI, Q-ball, non-regularized two-tensor model, regu-
larized two-tensor approach. A seed ROI in the posterior limb of the internal capsule
is used. Streamlines are superimposed on DTI FA maps and shown in both coronal
(top) and sagittal (bottom) perspective.

cipal and secondary eigenvalues of the regularized two-tensor approach were used in

planar voxels. Revised FA values were higher in regions identified as containing cross-

ing fibres, compared to the FA value from the single tensor fit in the same region (white

arrow), which is underestimated (Frank, 2001). Fig. 5.14b shows histograms of the FA

values obtained using the single and two tensor models, in regions where fibre cross-

ing was identified. The FA mean and standard deviation were 0.4426 and 0.103 for
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the single tensor model, 0.6961 and 0.11 for the two tensor model. On the other hand,

the MD images were identical, with an MD of roughly 0.7x10−3 mm2/s in the brain

parenchyma, as expected for a normal individual (Basser and Jones, 2002).

Figure 5.14: Revised FA and MD images using the regularized two-tensor estimates
in planar regions. (a) Fractional anisotropy (FA) maps, (b) FA histograms in planar
regions and (c) mean di�usivity (MD) images obtained from the single tensor DTI
model (left) and the regularized two-tensor model (right). The revised FA and MD
images (a), (c) on the right had the same value as the images on the left in non-
planar regions, in planar regions though, they were calculated from the eigenvalues
of either of the two resolved populations. Gaussian smoothing (σ=0.8) was applied
to both FA images.

5.7 Discussion

A regularized two-tensor approach has been presented that resolves fibre crossings

using conventional DTI data, acquired with low b value and relatively low number

of DW directions. Compared to the 4-parameter geometrically constrained two-tensor

model presented in (Peled et al., 2006), a) the problem of fitting a multi-parameter non-

linear model was transformed to fitting many models of lower dimensionality using a

set of basis directions, b) the model selection mask, based on the planar index cp, was

regularized and c) the orientation estimates in regions of fibre crossings were obtained

using the lower dimensionality models and were regularized using relaxation labelling.
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The geometrically constrained two-tensor model of (Peled et al., 2006) can be prone

to noise (Fig. 5.6). Therefore, the orientation estimates were regularized to increase

noise immunity, while keeping the advantage of low scanning requirements. Under

the low curvature assumption, the two orientations resolved from the model were re-

quired to slowly change across neighbouring voxels, thus preserving the continuity of

diffusion pathways. The planar index was also regularized to improve the model selec-

tion procedure (Fig. 5.5). This is important given that the model selection mask defines

boundary conditions for the regularization of the orientations. Simulations showed

that the regularized approach was more successful in resolving the crossing regions

and the respective orientations, particularly in cases of low SNR (Fig. 5.6). Tractogra-

phy results (Fig. 5.12 and 5.13) further supported these findings in-vivo and showed

the benefits from regularization in a more global scale.

The regularized two-tensor approach provides information about orientations, dif-

fusivity and anisotropy using a typical DTI scanning protocol (<6 minutes of scan-

ning for a 128x128x52 volume). The recent super-resolved spherical deconvolution

(Tournier et al., 2007) has shown satisfactory results in resolving fibre crossings using

DTI data acquired in 4.5 minutes, however, only orientational estimates are given by

this technique. PAS-MRI (Jansons and Alexander, 2003) has also shown good results

using relatively low angular resolution DTI data, however it has very high computa-

tional requirements. For comparison, a Q-ball reconstruction was attempted on the

data, using spherical harmonics as a basis (Hess et al., 2006). The resolving power

of such a reconstruction was smaller compared to the proposed approach, as shown

by the tractography results of Fig. 5.12, due to the low b value and the low angular

sampling.

The idea of using a basis set to resolve fibre crossings has been also utilized in

(Ramirez-Manzanares and Rivera, 2006). The DTI diffusion tensor was expressed as

a linear combination of predefined basis tensors with the volume fractions of these

tensors being spatially regularized. In planar regions, an oblate DTI tensor was de-

composed in multiple compartments with orientations compatible with the neighbour-

hood. The eigenvalues and anisotropy of these basis tensors was the same across all

voxels. The regularized two-tensor approach presented here allows different eigen-

values for different voxels. Furthermore, it is based on a two-tensor model, i.e. the
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diffusion propagator is modelled as a sum of two zero-mean trivariate Gaussians; con-

trary to (Ramirez-Manzanares and Rivera, 2006) that keep the DTI assumption and

decompose the single tensor to different compartments.

In (Ding et al., 2005; Parker et al., 2000) the raw image data were smoothed us-

ing non-linear filtering techniques. This can, in principle, remove noise artefacts and

recover orientational coherence in white matter. However, there are artefacts caused

by fitting non-linear models, which the above methods do not take into account. Fit-

ting a multi-tensor model suffers from numerical instabilities, due to the multiple local

minima of the objective function E (Tuch et al., 2002) and there are also identifiability

issues (Zhou et al., 2008). Smoothing directly the estimates of these models, as done

here, considers both types of artefacts.

A model selection procedure was necessary to identify regions where DTI fails.

Residuals of the single tensor fit (Tuch et al., 2002), statistical tests that compare the

residuals of single and multiple tensor models (Kreher et al., 2005) and the power of

spherical harmonics coefficients fitted to the ADC profile (Alexander et al., 2002) have

been utilized before. In this study, regions with a planar diffusion profile were con-

sidered inappropriate for DTI, as suggested by previous studies (Peled et al., 2006;

Staempfli et al., 2006; Tuch et al., 2002; Wiegell et al., 2000) and a two-tensor-model was

used instead. Planarity was quantified using the planar index cp. To reduce noise arte-

facts, cp was spatially regularized using two different approaches that gave comparable

results. The regularized cp appeared more resistant to noise compared to a mask cal-

culated using spherical harmonics (Alexander et al., 2002) with the sampling scheme

employed here (results not shown).

Assumptions and potential improvements

The approach presented in this chapter is governed by certain assumptions. A maxi-

mum number of two crossing tracts can be resolved. In cases of three crossing popula-

tions the DTI diffusion profile will be mostly spherical and will not be picked up by the

model selection procedure. Such cases can be identified using Westin’s spherical index

cs (Westin et al., 2002) within white matter and a three-tensor model can be fitted.

Utilizing a basis set of directions discretized the solution space and, therefore, re-
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duced model accuracy. Reducing the step size δω could improve accuracy. In a noisy

environment, though, a finer set would provide better fits to noisy data, thus having

a questionable advantage. Indeed, for cases of low SNR and/or number of DW direc-

tions, regularized orientation estimates were not significantly better when a a step size

of 10o or 2.5o was used (Fig. 5.8a and 5.9). Since decreasing the step size increased com-

putation time geometrically, 10o was considered a good compromise between accuracy

and speed.

An assumption of the geometrically constrained model was that the two cross-

ing tensors are cylindrically symmetric and have the same eigenvalues. Scenarios of

crossing tensors with different principal eigenvalues were simulated. This dissimilar-

ity reduced cp. For cp values used mainly here (cp>0.2), errors in the model estimates

were low, even in cases of 25% difference between the principal eigenvalues. For a 50%

difference, estimates were poor for volume fraction and eigenvalues, but the maximum

error for orientations was in the order of 10o. Therefore, differences between eigenval-

ues influenced mainly the volume fraction and eigenvalue estimates and much less the

orientation estimates.

Assumptions were also made for regularization. The basis orientations that are

compared between neighbouring voxels lie on different planes, as these are defined

by the respective third DTI eigenvectors e3. It is assumed that planes (i.e e3) are slowly

changing between neighbours, thus the compared orientations can be assumed roughly

coplanar. Indeed, the median difference in e3 between neighbouring voxels, identified

as planar by the regularized approach, was 9.82o across the whole brain volume. It

should be pointed out that even if compared orientations are not perfectly coplanar,

higher support will be given to orientations that promote smoother changes across

neighbours relative to orientations that cause abrupt turns.

The orientations of the voxels identified as containing a single tract are not regular-

ized; in these regions estimates have low uncertainties (Jones, 2003) and are therefore

more resistant to noise than voxels with a planar diffusion profile (Fig. 5.6). However,

the orientation estimates from single tract voxels act as boundary conditions for the

regularization scheme. Thus, a potential improvement would be to regularize the sin-

gle tensor eigenvectors, e.g. as in (Coulon et al., 2004; Tschumperle and Deriche, 2002),

prior to application of the two-tensor model.
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Summary

In summary, a method to regularize a two-tensor model has been presented, for better

resolving fibre crossings using DTI data. Crossing orientations were estimated uti-

lizing geometrically constrained two-tensor models of low dimensionality, applied to

voxels with a planar diffusion profile. Using a regularization scheme, both the model

selection procedure and orientation estimates were improved in images acquired with

conventional DTI protocols. Tractography results showed the achieved improvement,

as well as the smaller resolving power of Q-ball reconstruction when applied to this

type of data. Apart from orientations, revised anisotropy and diffusivity information

were also obtained. The ability to reconstruct complex intra-voxel structures robustly

with conventional DW imaging techniques can be of importance in research, as well as

in clinical environments.
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Appendix A: Generating uniformly distributed directions on a

unit sphere

Evenly spaced directions on the unit sphere were generated by maximizing the mini-

mum angle between any pair of nearest neighbouring vectors. N directions, restricted

on the hemisphere, were obtained as following:

- Start with N arbitrary unit vectors vi = {θi, φi} = [sin θi cos φi sin θi sin φi cos θi]
T,

i = 1...N, where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π are the spherical angles.

- For each vector vi:

* Generate vectors u1 = {θi, φi}, u2 = {θi + δ, φi}, u3 = {θi − δ, φi}, u4 = {θi, φi +

δ} and u5 = {θi, φi − δ}, where δ is a small angle (1o used here).

* Compute the maximum dot products mdk = max
j 6=i

(
∣

∣uk · vj

∣

∣), with k = 1...5, rep-

resenting the minimum angle between each of the vectors u with the other N − 1

vectors vj.

* Set vi = uk, where k is determined by selecting the minimum mdk.

* Iterate until convergence.

Appendix B: Simulating the diffusion-weighted signal

The procedure described in (Kingsley, 2006b) was followed to simulated the diffusion-

weighted signal. In general, the multi-tensor model (Tuch et al., 2002) was used to

simulate the noise-free signal obtained from N Gaussian compartments using a gradi-

ent of b value and gk direction:

Sk = S0

N

∑
n=1

fnexp(−bgT
kDngk), with

N

∑
n=1

fn = 1 . (5.14)

For N=1 this model reduces to the DTI model (Basser et al., 1994a). Noise was then

added to the signal Sk in quadrature (Kingsley, 2006b). To simulate a given signal to

noise ratio (SNR), the noise standard deviation was σ = S0/SNR and a noisy realiza-

tion S′k of the signal was:

S′k =
√

(Sk + νR)2 + ν2
I , (5.15)
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with νR and νI being randomly drawn from a zero-mean Normal distribution with

variance σ2, as shown in (Press et al., 1992).

To construct a diffusion tensor D with eigenvalues λ1 ≥ λ2 ≥ λ3 and principal

orientation (θ, φ), θ being the (zenith) angle from the z axis and φ being the (azimuth)

angle on the xy plane (see Fig. 3.4), the following rotation matrices were used (Skare

et al., 2000):

D = RT ·L ·R with L =











λ3 0 0

0 λ2 0

0 0 λ1











and R =











cosθcosφ cosθsinφ -sinθ

-sinφ cosφ 0

sinθcosφ sinθsinφ cosθ











.

For a given FA value and mean diffusivity MD(=trace/3), the eigenvalues of a

cylindrically-symmetric tensor were obtained using (Jones, 2004):

λ1 = MD

(

1 +
2FA

√

3− 2FA2

)

λ2 = λ3 = MD

(

1− FA
√

3− 2FA2

)

. (5.16)

Simulating tract geometries

In order to simulate a certain curve geometry (e.g. circular), tensors should be parallel

to the tangent direction of the curve. Assuming that a curve r is described paramet-

rically by r(s) = [x(s) y(s) z(s)]T, the tangent to it at position r(s) will be e(r(s)) =

[x′(s) y′(s) z′(s)]T. Making a tensor’s principal eigenvector e1 equal to e at locations

defined by the image grid, will allow the simulation of the DW signal that would be

obtained from the certain geometry. Once the vector e1 is defined, a unit vector e2 can

be chosen so that e1 · e2 = 0. Then, the third eigenvector will be e3 = e1 × e2. Having

all the eigenvectors defined, the tensor will be D = λ1e1eT
1 + λ2e2eT

2 + λ3e3eT
3 .

To simulate a circle of radius α centred at (xo, yo) and lying on the xy plane, we

have:




x(θ) = xo + α cos θ

y(θ) = yo + α sin θ



 =⇒





x′(θ) = −α sin θ

y′(θ) = α cos θ



 , (5.17)

with θ ∈ [0, 2π) being the angle from the x axis. If (xo, yo) is a fixed location on the
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image grid, then a voxel with centre coordinates (x1, y1) will be on the circle with radius

α =
√

(x1 − xo)2 + (y1 − yo)2 and at angle θ = atan[(y1 − yo)/(x1 − xo)] (θ = π/2 if

x1 = xo). The tangent vector at (x1, y1) will then be e = [−α sin θ α cos θ]T.
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6
Fuzzy Anatomical Connectedness of the

Brain

Overview

Medical images are by nature fuzzy and diffusion-weighted MR images are no excep-

tion. In this chapter, a global, fuzzy algorithm for assessing white matter connectivity

in the brain is presented. The proposed method considers anatomical paths as chains

of linked neighbouring voxels. Links between neighbours are assigned weights us-

ing the respective fibre orientation estimates. By checking all possible paths between

any two voxels, a connectedness value is assigned, representative of the weakest link

of the strongest path connecting the voxel pair. Multiple orientations within a voxel

can be incorporated, thus allowing the utilization of fibre crossing information, while

fibre branching is inherently considered. Under the assumption that paths connected

strongly to a seed will exhibit adequate orientational coherence, fuzzy connectedness

values offer a relative measure of path feasibility.
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Contributions of this chapter

• Fuzzy connectedness, an image segmentation algorithm, is modified and adapted

to the WM tractography problem.

• Fuzzy connectedness tractography is presented as a global algorithm and is shown

to work with diffusion MRI methods that provide any number of fibre orientation

estimates per voxel. Thus, it can propagate through fibre crossings.

• Validation of the new algorithm is presented through simulations and in-vivo

data. Diffusion tensor and and Q-ball images are used as working examples.

Results with orientations obtained from the two-tensor approach of the previous

chapter are also presented.

• A qualitative comparison is performed with probabilistic tractography and the

recent graph-based tractography.

Publications

Contributions from this chapter have appeared in the following:

• S. N. Sotiropoulos, L. Bai and C. R. Tench. Fuzzy anatomical connectedness of the

brain using single and multiple fibre orientations obtained from diffusion MRI,

Computerized Medical Imaging and Graphics, in press, 2009.

• S. N. Sotiropoulos, C. R. Tench and L. Bai. In-vivo brain anatomical connectivity

using diffusion magnetic resonance imaging and fuzzy connectedness, Proceed-

ings of the IEEE International Conference on Bioinformatics and Bioengineering (BIBE),

pp. 1-8, Athens, Greece, October 2008.

• S. N. Sotiropoulos, C. R. Tench, P. S. Morgan and L. Bai. Combining Q-ball imag-

ing and fuzzy connectedness: An approach to distributed brain tractography,

Medical Image Understanding and Analysis (MIUA) Proceedings, pp. 24-28, Dundee,

Scotland, July 2008.

• S. N. Sotiropoulos, C. R. Tench and L. Bai, "Fuzzy anatomical connectedness us-

ing diffusion MRI: An approach to tractography of the brain", Proceedings of the

ISMRM Annual Meeting, p.1846, Toronto, Canada, May 2008.
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6.1 Introduction

Commonly used streamline tractography (Basser et al., 2000; Conturo et al., 1999; Mori

et al., 1999) utilizes hard binary relationships to assess white matter connections, with

two voxels being considered either connected or not connected. However, medical im-

ages are by nature fuzzy (Udupa and Saha, 2003) and DW images are no exception.

Experimental noise, hardware limitations, limited spatial resolution, and partial vol-

ume artefacts are some of the factors that contribute to the fuzziness of the images.

Therefore, a fuzzy framework seems more appropriate. In this chapter, a fuzzy algo-

rithm for assessing anatomical connectivity is presented.

The probabilistic framework has been proposed as an alternative to the determin-

istic streamline tractography. Probabilistic techniques (Behrens et al., 2003; Friman

et al., 2006; Hagmann et al., 2003; Jones and Pierpaoli, 2005; Parker et al., 2003) gen-

erate streamlines in a Monte-Carlo fashion and define an index of connectivity using

visitation maps. A drawback of these techniques is the inevitable reduction of the con-

nectivity index with distance from the seed (Behrens et al., 2003; Parker et al., 2003).

Moreover, the repetitive streamline generation increases execution time, while the con-

nectivity values can depend on the total number of streamlines launched.

All streamline-based methods, deterministic and probabilistic, determine white

matter bundles using locally greedy criteria, i.e. tracking sequentially through orienta-

tion estimates in adjacent voxels. Another way of tract reconstruction is to identify the

best path between two voxels of interest, according to some global criterion, rather than

identifying paths arising from a single voxel. These global approaches are less sensitive

to local artefacts introduced by various noise sources (Behrens and Jbabdi, 2009). Front

propagation techniques (Campbell et al., 2005; Jackowski et al., 2005; Parker et al., 2002;

Staempfli et al., 2006; Tournier et al., 2003) are an example. They identify a best path

from a seed to all other brain voxels by evolving a surface front from this seed. A dis-

tributed index of connectivity can then be defined using either functions of the front

arrival times in each voxel or the agreement between the surface trajectory and the

underlying fibre orientation estimates. Distributed indices of connectivity are also cal-

culated by graph-based tractography techniques (Iturria-Medina et al., 2007; Zalesky,

2008). These methods utilize graph theory to exhaustively search the image for the

strongest path connecting any two voxels of interest.
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In this chapter, a new global tractography method using a fuzzy framework for

assessing brain anatomical connectivity is introduced. The new approach inherently

considers fibre crossing information. It utilizes fuzzy connectedness (Udupa and Saha,

2003; Udupa and Samarasekera, 1996), an algorithm initially proposed for image seg-

mentation, to tackle the tractography problem. Anatomical paths are considered as

chains of linked neighbouring voxels. A connectedness value is assigned between any

voxel and a seed of interest by checking all the possible paths that connect them on

the discrete image grid and finding the strongest. The connectedness value reflects the

weakest link along this strongest path. It quantifies the orientational coherence along a

path and provides a relative measure for path feasibility, under the condition that fibre

orientations change smoothly along an anatomical path. Therefore, it is expected that

paths exhibiting high orientational coherence will acquire high connectedness values

relative to the background.

Compared to other tractography methods, the algorithm provides converged con-

nectivity values that do not drop systematically with the distance from the seed, in a

single iteration and for all image voxels. Furthermore, path propagation can be per-

formed with relatively high angular resolution and combined in a single step with

connectivity assignment. Algorithm implementation with dynamic programming re-

sults in fast execution. The new method inherently accounts for fibre branching. To re-

duce the chance of false positives when propagating through crossing regions, multiple

links are considered -when appropriate- between neighbouring voxels to account for

the existence of multiple tracts. The proposed method can be combined with any DW-

MRI reconstruction approach that provides N ≥ 1 fibre orientation estimates. Results

in simulated data, as well as in human data obtained from Diffusion Tensor Imaging

(DTI) (Pierpaoli et al., 1996) and Q-ball Imaging (Tuch, 2004), are presented.

6.2 Fuzzy connectedness framework

Given a 3-dimensional digital image, a local fuzzy relation can be defined between

any two neighbouring voxels i and j of the image. This relation is called affinity

(Udupa and Samarasekera, 1996). The strength of the affinity is given by the func-

tion µ(i, j)(µ : Z3 × Z3 → [0, 1]), determined by the product of a) the similarity of
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the image intensities or intensity-based features at i and j with b) the adjacency of the

two voxels. Normally, the adjacency is a hard binary relationship with a value of 1 for

neighbouring and 0 for non-neighbouring voxels. Therefore, non-neighbouring voxels

have a zero affinity. A standard implementation uses a 3x3x3 neighbourhood, which

gives 26 non-zero affinities for every voxel i.

The fuzzy connectedness algorithm (FCA) (Udupa and Samarasekera, 1996) uti-

lizes the local affinity values to assign strengths FC(a, b) of a global fuzzy relation

called fuzzy connectedness, between any pair of voxels a and b. Fuzzy connectedness

takes values in [0,1] and represents the weakest link of the strongest path connecting

the two voxels of interest. There are many possible paths that connect a and b on the

discrete image grid. Each path can be considered a chain of voxels, with successive el-

ements being neighbouring. In this framework, the smallest affinity µ along a path, i.e.

the weakest link of the chain, determines the path strength. Considering all possible

paths connecting a and b, the strength of the strongest will be the connectedness FC(a,

b). An example is shown in Fig. 6.1, with three putative paths connecting the voxels of

interest. Affinities are shown colour-coded and the strength of each path is determined

by the smallest affinity along it.

Figure 6.1: Example of applying fuzzy connectedness on a simple spatial grid. To
�nd the connectedness FC between voxels a and b, all the possible paths that
connect them are explored, assume Paths 1, 2 and 3 in this example. Each path is
a chain with links between neighbouring voxels. The strength of each link is given
by the a�nity of the linked voxels, shown in gray scale. The smallest a�nity along
a path determines the strength of the path. The strength of the strongest path will
be the connectedness FC (a, b).
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Using FCA with a seed voxel or region of interest (ROI) and an affinity function, a

connectedness value FC(a, s) between the seed s and every other image voxel a can be

computed. In the following sections, this connectedness value is referred as FC(a) for

simplicity, since there is always a seed s.

The fuzzy connectedness algorithm can be implemented efficiently using graph-

searching methods, which result in execution at almost interactive speeds (Nyul et al.,

2003). Instead of searching explicitly for each possible path between s and all the other

voxels, a recursive scheme is used, along with a queue as an auxiliary data structure.

An FC value of zero is assigned initially to all voxels, apart from the seed that has a

connectedness of one and is inserted into the queue. In each iteration, the voxel i with

the maximum FC value is dequeued and its neighbours j are considered. For each j,

a trial value is computed as the minimum between the FC value of the focal voxel i

and the affinity µ(i, j) between the two. This computes the weakest link (strength) of

the path from s to j through i. If the trial value is larger than the current FC value at j,

then this becomes the new fuzzy connectedness value of j; meaning that the path from

s through i is the strongest so far to j, such that its weakest link becomes the connect-

edness of j. When such an update occurs, voxel j enters the queue, unless it is already

queued. Iterations stop when the queue becomes empty, i.e. optimal connectedness

values have been calculated for all voxels.

6.3 Fuzzy connectedness tractography

To apply FCA to WM tractography, two main aspects of the algorithm should be con-

sidered and modified: the affinity function and the path generation procedure. The

affinity is determined by the similarity of the fibre orientation estimates between neigh-

bouring voxels, as derived from the intensities of the DW images. More details on the

affinity function are presented below.

Regarding path generation, FCA takes into account all possible links that are legal

voxel connections on the discrete image grid. However, this does not guarantee that the

paths are anatomically realistic. Lateral and backward propagation (180o turns) needs

to be avoided and propagation should be restricted along the WM fibre orientations. A

modification is required to force forward path propagation. A memory property for each
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voxel is introduced. Once a voxel a is identified as part of a path, its previous voxel c in

the path chain, through which a is connected to the seed in the strongest way, is stored.

Knowing the vector rca that connects voxel c to a, propagation can be constrained only

to directions n, such that rca · n > 0, prohibiting lateral or backward path propagation.

Seed voxels, i.e. voxels without memory, are treated differently. All neighbours, both

forward and backward, are considered for the seeds to initiate propagation in both

directions. Different aspects of the fuzzy connectedness tractography (FCT) algorithm

are presented in the following sections.

Affinity and connectedness based on DTI orientation estimates

Assuming that anatomical paths are smooth curves, fibre orientation estimates along a

path are expected to vary smoothly. Therefore, the affinity between neighbouring vox-

els i and j is assessed using a coherence condition on the orientation estimates obtained

from diffusion MRI. For now, a single fibre orientation estimate is assumed to be avail-

able for each voxel, as is the case for diffusion tensor imaging (DTI). Then, the affinity

function is a modified version of the symmetric voxel linking function suggested in

(Parker et al., 2002; Poupon et al., 2000):

µ(i, j) = µ(j, i) =
1

Z · (1−min(|e(i) · n(i, j)| , |e(j) · n(i, j)| , |e(i) · e(j)|)) , (6.1)

where e(i) is the fibre orientation estimate at voxel i (i.e. the principal DTI eigenvector),

n(i,j) is the unit vector connecting the centres of voxels i and j and Z a normalization

constant to keep affinities in the [0,1] interval. Z is chosen as the maximum of the non-

normalized affinity values across the whole 3D image. The above function is peaked

when all three vectors are collinear, i.e. when the orientation vector of voxel i points to

the centre of voxel j and the orientation vector of voxel j points to the centre of voxel i.

In this case, the affinity as presented in Eq. (6.1) becomes infinite, which is handled in

practice by subtracting the min(·) function from a number slightly larger than 1 (1.001

used here).

An example of the affinity values obtained with Eq. (6.1) is shown in Fig. 6.2. The

affinity for two neighbours i and j is plotted as a function of the respective fibre ori-

entations. For simplicity, orientations are varied only within plane. As expected, the
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Figure 6.2: A�nity values for a pair of neighbouring voxels i and j. The normalized
a�nity µ is plotted as a function of the �bre orientations (shown with blue lines) at
the two voxels. Only 2D orientations are considered for simplicity. The angles φ are
relative to the horizontal axis. Colour code is light for high and dark for low.

maximum affinity is reached when both orientations become colinear with the connect-

ing vector n (i.e. φi = φj = 90o).

The FCT algorithm utilizes the above affinity function to calculate fuzzy connect-

edness values FC(a) between every image voxel a and the seed voxel(s) s. FCT also

outputs the Memory array that keeps for every voxel a its previous through which a

is connected to the seed in a strongest way. A priority queue is used as an auxiliary

structure and the elements are sorted so that the one with the largest FC value is al-

ways the first queue element. Pseudo-code is provided below, for the case of a 3x3x3

neighbourhood.
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Algorithm 6.1 Fuzzy Connectedness Tractography with DTI fibre orientations

1: for all image voxels a do

2: FC(a)=0; Memory(a)=undefined;
3: for all seed voxels s do

4: FC(s)=1; Enqueue s;
5: while Queue 6=Empty do

6: Dequeue element i with maximum FC value;
7: prev=Memory(i);
8: for all neighbours j of i do

9: fmin=min[FC(i),µ(i,j)];
10: if prev 6= undefined then

11: n1 = i− prev and n2 = j− i;
12: dot = n1 · n2;
13: if dot ≤ 0 then

14: fmin = 0;
15: if fmin>FC(j) then

16: FC(j)= fmin;
17: Memory(j)=i;
18: if j /∈ Queue then

19: Enqueue j;
20: else

21: Update the Queue key of j;

Increasing angular resolution

Affinities are calculated between each image voxel i and its immediate neighbours. The

neighbourhood size effectively determines the number of candidate propagation direc-

tions n. The implementation above uses the 3x3x3 neighbourhood, i.e. 26 neighbours

in 3D. The angular resolution of path propagation can be enhanced by increasing the

neighbourhood size to 5x5x5, including next nearest neighbours, as shown in Fig. 6.3.

This gives 124 neighbours in 3D. In this case, though, neighbours that are not directly

connected to the focal voxel i exist, such as voxel j in Fig. 6.3b. To avoid discontinuities

in paths, at least one nearest neighbour of the focal voxel is required to be in the path.

More specifically, for each next nearest neighbour j (light gray in Fig. 6.3b), the two

nearest neighbours c and d (darker gray in Fig. 6.3b) that are traversed by the vector

connecting the focal voxel i to j are considered. Then, the one with the highest con-

nectedness FCh value to the seed is chosen between c and d. If this connectedness is

smaller than the connectedness value of j and propagation is decided from i to j, the

assignment FCh=FC(j) occurs.
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Figure 6.3: Di�erent neighbourhood systems of focal voxel i, 3x3x3 in (a) and
5x5x5 in (b). Only neighbours within the same slice as i are presented. Black arrows
represent candidate directions for path propagation. Dark gray: nearest neighbours
of voxel i, light gray: next nearest neighbours of voxel i.

Incorporating fibre crossing information

What happens when a crossing occurs and more than one fibre orientation estimate

are available for a voxel? To accommodate such scenarios, FCT can be modified ac-

cordingly. Assuming that up to N ≥ 1 fibre orientations exist per voxel, the affinity

function between voxels i and j can be generalized to an affinity between the lth orien-

tation of i and the kth orientation of j:

µlk(i, j) = µkl(j, i) =
1

Z · (1−min(|el(i) · n(i, j)| , |ek(j) · n(i, j)| , |el(i) · ek(j)|)) .

(6.2)

Similarly as before, this affinity function is peaked when the lth orientation vector of

voxel i points to the centre of voxel j and the kth orientation vector of voxel j points to

the centre of voxel i. If L (1≤L≤N) orientations exist in i and K (1≤K≤N) orientations

in j, the indices l and k range from 1 to L and 1 to K respectively, giving L× K affinity

values between the two voxels.

To account for the multiple affinity values between two voxels, each of the orienta-

tions per voxel is treated as a separate element in the fuzzy connectedness framework.

Then, the structural element of the algorithm becomes (i, l), the lth orientation of voxel

i, rather than voxel i itself. Therefore, FCT does not compute a scalar connectedness

value FC(i) for a voxel i, but a vector FC(i) with length L; lth vector entry FCl(i) corre-
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sponds to the FC value of the lth orientation. The final FC value for the specific voxel

i will be given by the maximum of these L values. The generalized FCT algorithm is

given in the Appendix.

6.4 Data and processing

Simulations

A phantom containing a circular tract (Fig. 6.4a) and another containing two curved

crossing tracts (Fig. 6.4b) were numerically generated. The tracts were embedded

within a diffusively isotropic surround, to simulate gray matter (GM), where fibre ori-

entations were random. The noise-free DW signals in each voxel were simulated as

described in (Kingsley, 2006b), using a multi-tensor model:

S(gk) = S(0) ·
N

∑
i=1

fiexp(−bkgT
kDigk), with

N

∑
i=1

fi = 1 , (6.3)

where N is the number of tracts simulated, Di is the diffusion tensor simulating the

diffusion profile along the ith tract, having a volume fraction fi, and gk is the direction

vector of the kth = 1...M diffusion-sensiziting magnetic field gradient. Sixty-one (M =

61) evenly spaced gradient directions (Cook et al., 2007), b=1000 s/mm2 for the circular

and b=3000 s/mm2 for the crossing phantom were used. The number of tracts was set

to N = 1 for all voxels, apart from the voxels contained in the crossing region of the

second phantom, where N = 2. The tensors in simulated WM tracts had a fractional

anisotropy FA=0.8 (Pierpaoli and Basser, 1996), representative of regions within the

highly anisotropic corpus callosum, and an orientation tangent to the desired simulated

shape at each point. The tensors in GM voxels had an FA=0.25 and random orientation.

All tensors had a trace of 2.1x10−3 mm2/s (Pierpaoli et al., 1996).

Zero-mean Gaussian noise was added in quadrature, as described in (Kingsley,

2006b) to simulate the Rician nature of MRI noise (Gudbjartsson and Patz, 1995). The

signal to noise ratio (SNR) was defined as the average intensity of the non-diffusion

weighted image S(0) divided by the standard deviation of the noise. Given the simu-

lated DW data, fibre orientation estimates were obtained. For the first phantom the Dif-
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fusion Tensor Imaging (DTI) model (Basser et al., 1994a; Pierpaoli et al., 1996) was used

to get a single fibre orientation per voxel, as estimated from the principal eigenvector

of the diffusion tensor. For the second phantom Q-ball imaging (QBI) (Tuch, 2004) was

utilized. The peaks of the Q-ball ODF gave the orientation estimates. The ODFs were

computed using even spherical harmonics up to 4th order as basis (Descoteaux et al.,

2007; Hess et al., 2006), as explained in section 3.4. The CAMINO diffusion toolkit was

then used (Cook et al., 2006) to find the ODF peaks. A maximum of N=2 orientations

were calculated in each voxel. FCT was applied to both phantoms to test its perfor-

mance in single (N=1) and multiple orientation (N=2) fields.

In-vivo images

A DTI (Pierpaoli et al., 1996) and a Q-ball (Tuch, 2004) whole-brain scan of a healthy

male subject were performed; local research ethics committee approval and informed

consent were obtained. A single-shot, spin-echo, echo-planar, diffusion-weighted se-

quence was used (acquisition matrix 112x112 with in-plane resolution 2x2 mm2, in-

terpolated during reconstruction to 224x224) in a Philips 3T Achieva clinical imaging

system (Philips Medical Systems, Best, The Netherlands). A parallel imaging factor of

2 was used. Six b=0 s/mm2 images were acquired and averaged. Diffusion weighting

was applied in 61 evenly spaced directions (Cook et al., 2007) with b=1000 s/mm2 for

the DTI scan (TE=57.6 ms, TR=10990 ms) and b=3000 s/mm2 for the Q-ball scan (TE=72

ms, TR=15292 ms). 52 slices were acquired with a thickness of 2 mm. Total imaging

time was roughly 35 minutes.

Images were corrected for eddy current distortion using FSL’s diffusion toolbox

(Smith et al., 2004). Brain was extracted using BET (Smith et al., 2004). Corrected

images were then tri-linearly interpolated along the out-of-slice axis to get isotropic

voxels with 1x1x1 mm3 dimensions. Fibre orientations were estimated in each case as

described in the simulations section. For the DTI dataset, orientations were also esti-

mated using the regularized two-tensor model presented in the previous chapter.

FCT was performed on both the DTI and Q-ball datasets. Voxels with a small de-

gree of fractional anisotropy (FA<0.2) were excluded from the analysis, assuming that

these represent GM or CSF. For comparison purposes, streamline tractography using

a modified FACT algorithm (Mori et al., 1999) was performed (FA threshold=0.2, cur-
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vature threshold=45o), as it is implemented in the CAMINO toolkit (Cook et al., 2006).

Q-ball orientation estimates were used, so that streamlines could propagate through

crossings. The distributed graph-based tractography was also implemented, as de-

scribed in (Iturria-Medina et al., 2007), using the whole QBI ODFs. Finally, multi-tensor

(N=2) probabilistic tractography (Parker and Alexander, 2003) was performed using

CAMINO (Cook et al., 2006).

6.5 Results

Simulations

Fig. 6.4a presents fuzzy connectedness maps obtained using FCT on the circular phan-

tom. The gray scale corresponds to FC values between each voxel and the seed, which

is indicated by the white arrow. For comparison, the binary connectivity index ob-

tained from streamline tractography for the same seed is shown. The distributed na-

ture of FCT compared to streamline tractography is evident. FCT identified strong

paths arising from the seed, along with other weaker connections. WM voxels with

coherent fibre orientations were distinguished from the non-coherent GM background.

The effect of increasing angular resolution using more neighbours is also shown in Fig.

6.4a. As expected, a larger neighbourhood assisted the algorithm in capturing more

curvature and increased the connectedness values.

The ability of the method to go through fibre crossings and utilize multiple fibre

orientations per voxel is shown in Fig. 6.4b. When seeding within the individual tracts,

paths in the appropriate tract were identified. When seeding in the crossing region,

paths belonging to both tracts were found.

To test the behavior of FCT against noise, 100 Monte-Carlo simulations were per-

formed using the circular phantom at a given SNR level. A linear ROI, indicated in

Fig. 6.4a with a black solid line (left subfigure), defined a cross-section of the phan-

tom. The central part of this cross-section (7 voxels) was within the WM circular ring,

while its edges (5 voxels each) were within the GM region. The fuzzy connectedness

values FC of the voxels along this ROI were studied across the 100 simulations. The

seed voxel was the same across simulations, at the location indicated by the white ar-
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Figure 6.4: Fuzzy connectedness (FC ) maps obtained from simulated phantoms
(SNR=20). Connectedness values are shown in gray scale. Seed voxels are indi-
cated with white arrows. (a) From left to right: Fibre orientation estimates for
the circular phantom, FC map obtained using a 3x3x3 neighbourhood, FC map
obtained using a 5x5x5 neighbourhood and the same seed, Streamline generated
from the same seed and corresponding binary connectivity index (white=connected,
black=not connected). The black solid line in the orientations plot de�nes a cross-
section used for quantitative simulations (see Fig. 6.5). (b) From left to right: �bre
orientation estimates for the crossing phantom (cropped and magni�ed to show
crossing region), FC maps obtained using a 5x5x5 neighbourhood and three di�er-
ent seed points. In both (a) and (b), orientation estimates are superimposed on
di�usion anisotropy values, which are high for WM voxels, low for GM voxels and
intermediate for voxels in the crossing region.

row in Fig. 6.4a. Fig. 6.5 shows the mean and the standard deviation of the FC values

at each of these discrete voxel locations, using the 3x3x3 and the 5x5x5 neighborhoods.

The noise-free connectedness values along the ROI are shown by a dashed line, which

is continuous, just for visualization purposes. The SNR in these simulations was 15,

representative of the noise conditions in a DW-MRI acquisition. The plots show the

robustness of the calculated values against noise and their good agreement with the

noise-free ones. Given that the simulated tract is very curved and that the utilized affin-

ity (Eq. 6.2) penalizes curvature, it is expected that the connectedness of the stronger

paths will be smaller than one. Deviation from this ideal value is reduced in the case

of the 5x5x5 neighborhood (Fig. 6.5b). Compared to the values obtained with a 3x3x3

neighborhood (Fig. 6.5a), the connectedness of the voxels belonging to the circular ring

is almost doubled. Furthermore, the contrast between the more central and stronger

paths and the surrounding weaker paths is enhanced with the 5x5x5 neighborhood.
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Nevertheless, using both neighborhood sizes, FCT differentiated regions that were co-

herently connected to the seed from the non-coherent ones.

Figure 6.5: Mean (circle) and standard deviation (horizontal bars) of fuzzy connect-
edness values across 100 simulations (SNR=15), at voxel locations de�ned by the
linear ROI of Fig. 6.4a (black solid line). Voxel counting starts from the top left
corner of the phantom and increases towards the phantom centre. FC values were
obtained using (a) a 3x3x3 neighbourhood, (b) a 5x5x5 neighbourhood. Noise-free
FC values are indicated by the dashed line.

In-vivo DW images

The performance of FCT in different brain regions is shown in Fig. 6.7 - Fig. 6.10. A

5x5x5 neighborhood was used in all cases. Typical execution times for a seed ROI were

in the order of 1 minute for DTI FCT and 2 minutes for Q-ball FCT on a 3.2 GHz PC.

An axial ROI within the body of the corpus callosum seeded the algorithm in Fig.

6.7. The orientation estimates utilized are shown in Fig. 6.6. The corpus callosum

crosses with the corona radiata and the superior longitudinal fasciculus at a region

known as the centrum semiovale (Woolsey et al., 2008). As shown by the white arrows,

Q-ball imaging resolves multiple crossing directions in this area.

In Fig. 6.7a, coronal maximum intensity projections (MIP) of the raw connect-

edness values FC are shown when the DTI and the Q-ball orientation estimates are

utilized, respectively. (The intensity of a voxel on a MIP is the maximum intensity at

this voxel location across all the slices parallel to the projection plane). For comparison,

streamlines generated within the multi-fibre field of the Q-ball reconstruction are pre-

sented. The colour-coded connectedness maps had higher intensities in regions that
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were relatively more likely to belong to the corpus callosum. The distributed nature of

the algorithm is evident, since all image voxels are assigned a connectedness value.

Figure 6.6: DTI and Q-ball orientation estimates for roughly the same coronal slice,
zoomed into the region of the corpus callosum. The crossings of the callosal with
other tracts in the centrum semiovale (white arrows) are resolved only by Q-ball
imaging. In both cases, orientations are superimposed on an FA map. Voxels with
FA<0.2 are masked out for better visualization.
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Figure 6.7: Fuzzy connectedness (FC ) maps obtained from an ROI within the corpus
callosum. (a) From left to right: Coronal maximum intensity projection (MIP) of
the raw FC values using the DTI orientation estimates, Coronal maximum intensity
projection of the raw FC values using the Q-ball orientation estimates, Streamlines
generated using the Q-ball orientation estimates, (b) MIP of thresholded FC values
using the DTI estimates, along with coronal slices, (c) MIP of thresholded FC values
using the Q-ball estimates, along with coronal slices. In all cases, the FC maps are
superimposed on di�usion fractional anisotropy (FA) images. Seed locations are
indicated by white arrows.

In Fig. 6.7b and Fig. 6.7c, thresholds were set to keep the top connected voxels

and remove the relatively homogeneous FC values of the background. The thresholds

were determined from the histograms of the FC values, where sharp discontinuities

indicated the transition from the background to the top connected voxels (Fig. 6.8).

These thresholds corresponded roughly to the 97.5th percentile of the distribution of

the FC values for DTI FCT (Fig. 6.7b) and to the 95th percentile for Q-ball FCT (Fig.

6.7c), reflecting the higher coverage of the callosal tracts by the latter method. A MIP

of thresholded connectedness values, along with the FC values on different coronal

slices is presented in each case. DTI FCT (Fig. 6.7b) captured the medial portion of

the corpus callosum, as expected when using the DTI orientations (Mori et al., 2005).

However, more branching was captured compared to the medial portion resolved from

streamline tractography. Q-ball FCT (Fig. 6.7c) went through the crossing at the cen-
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Figure 6.8: Histogram-based detection of background connectedness threshold. The
histogram of the FC values obtained with Q-ball FCT when seeding in the corpus
callosum (Fig. 6.7) is shown. A very sharp transition in the histogram, pointed by
the black arrow, was used to identify the background connectedness value.

trum semiovale and the results captured lateral projections to the cortex, apart from the

medial callosal paths. It should be pointed out that the resolved crossings in Fig. 6.7c

were not perfectly symmetric in the two hemispheres and greater fanning was evident

in the left hemisphere. This was caused by asymmetric Q-ball reconstruction in the

contralateral regions of the centrum semiovale, possibly due to noise.

A similar organization of tractography maps is presented in Fig. 6.9, with the seed

being a coronal ROI in the cingulum. In this case, streamlines (Fig. 6.9a) were stopped

at the level of the splenium of the corpus callosum and did not continue towards the

parahippocampal gyrus, probably due to noise artefacts. The distributed nature of

FCT, however, allowed the algorithm to continue, with Q-ball FCT (Fig. 6.9c) having

a slightly higher connectedness through that point than DTI FCT (Fig. 6.9b). Given

that there are not many fibre crossings along this tract, only small differences can be

observed when single and multiple orientations per voxel are used (Fig. 6.9b and Fig.

6.9c). Q-ball FCT (Fig. 6.9c) assigned higher values in the subgenual area, where partial

volume artefacts distort the DTI orientations. Furthermore, the body of the cingulum

was slightly thicker (Fig. 6.9c) compared to the DTI FCT result (Fig. 6.9b), since the

apparent (due to limited resolution) crossing between the cingulum and the corpus
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Figure 6.9: Fuzzy connectedness maps obtained from a coronal ROI within the
cingulum. (a) From left to right: Sagittal maximum intensity projection (MIP) of
the raw FC values using the DTI orientation estimates, Sagittal maximum intensity
projection of the raw FC values using the Q-ball orientation estimates, Streamlines
generated using the Q-ball estimates, (b) MIP of thresholded FC values using the
DTI estimates, along with axial slices, (c) MIP of thresholded FC values using the
Q-ball estimates, along with axial slices. In all cases, the FC maps are superimposed
on di�usion fractional anisotropy (FA) images. Seed locations are indicated by white
arrows.

callosum cannot be resolved by DTI. For the same reason, paths with relatively low

connectedness arising from the main body of the cingulum towards the cortex that

were evident with DTI FCT were not observed with Q-ball FCT.

MIPs of thresholded FC values in other brain regions are shown in Fig. 6.10. In all

cases DTI orientations were utilized, apart from Fig. 6.10a and Fig. 6.10c, where Q-ball

estimates were used. In Fig. 6.10a, a saggittal ROI within the medial portion of the

superior longitudinal fasciculus was the seed and only Q-ball orientations supported

the existence of paths arising from the parietal cortex and ending up in motor cortical

regions, in agreement with (Behrens et al., 2007). In Fig. 6.10b a single seed voxel was

selected in the inferior part of the fornix, close to the amygdaloid complex. Fornix paths

were reconstructed along with some paths in the anterior thalamic radiation, which

had though smaller connectedness values. In Fig. 6.10c an axial seed ROI at the upper
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Figure 6.10: Fuzzy connectedness maps obtained using various seeds in the brain.
Maximum intensity projections of thresholded FC values are shown in each case. The
seeds are placed, (a) at the medial portion of the superior longitudinal fasciculus,
(b) at the inferior part of the fornix, (c) at the upper pons within the pyramidal
tract, (d) at the splenium of the corpus callosum, and (e) at the apex of Meyer's
loop. DTI orientations are used in all cases, apart from (a) and (c) where Q-ball
estimates are utilized. Seed locations are indicated by white arrows.

pons was used and corona radiata paths were depicted. In Fig. 6.10d a single voxel in

the splenium of the corpus callosum seeded the algorithm. Finally, a seed placed at the

apex of Meyer’s loop was found to be strongly connected to the optic radiation fanning

to the occipital cortex and the lateral geniculate nucleus of the thalamus (Fig. 6.10e).

Apart from connectedness maps, paths generated by FCT can be reconstructed

using the memory information. The strongest path connecting any voxel to a seed can

be found in a backward fashion. Starting from an end point, one can recursively find

the previous voxels and fibre orientations within those voxels that lead to the seed. By

setting a threshold to the FC values, the paths that correspond to the top connected

voxels can be plotted. An example is shown in Fig. 6.11a, where the most strongly

connected paths generated using FCT from a seed ROI in the splenium of the corpus

callosum are presented. Paths were generated by starting from the voxels with the top

0.5% FC values. For each voxel belonging to a path, the respective fibre orientation

estimate was plotted. For comparison, streamlines generated using CAMINO (Cook

et al., 2006) are shown in Fig. 6.11b. FCT paths exhibit greater branching.

Another example is shown in Fig. 6.12 that presents paths belonging to different

brainstem tracts. During the backward propagation, a moving average filter was uti-

lized to smooth the trajectories. The tracts of interest were the middle, superior and

inferior cerebellar peduncle, the medial lemniscus and the corticospinal tract. FCT was
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Figure 6.11: (a) Top 0.5% paths generated using FCT from a seed ROI in the
splenium of the corpus callosum. DTI orientation estimates (N=1) were utilized.
For each voxel belonging to a path, the respective �bre orientation is plotted. Paths
were generated backwards starting from the top connected voxels back to the seed.
(b) Streamlines generated using the same ROI. Paths are superimposed on FA maps.

Figure 6.12: Reconstruction of paths in the brainstem using FCT. Di�erent colours
are used for paths belonging to di�erent WM tracts. Five di�erent seed voxels
were used at the middle cerebellar peduncle (red), at the right inferior cerebellar
peduncle (orange), at the right superior cerebellar peduncle (green), at the right
medial lemniscus (yellow) and at the right corticospinal tract (blue). The seed
voxels are indicated with a sphere. Only the top paths connected to each of the
seeds are shown. DTI orientation estimates were used. The right thalamus rendered
and in white colour and an axial slice of the FA map are shown for anatomical
reference.
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applied individually for each of the five tracts, using one seed voxel per tract, and only

the paths arising from the top 1% connected voxels were plotted (for the medial lemnis-

cus and superior cerebellar peduncle a smaller threshold was used due to the smaller

size of these tracts). These paths agree well with a-priori anatomical knowledge of the

brainstem (Mori et al., 2005) and verify the anatomically realistic propagation of the

algorithm.

FCT results were compared against the results of two other quantitative tractog-

raphy algorithms, the latest graph-based algorithm (Iturria-Medina et al., 2007) and

the multi-tensor (N=2) probabilistic tractography (Parker and Alexander, 2003). The

graph-based method is a global tractography approach similar to FCT, so a compar-

ison between them is more direct. Multi-tensor probabilistic tractography is a local

tracking approach, but it was employed due to the popularity of probabilistic stream-

line techniques (Behrens and Jbabdi, 2009). All methods utilized the Q-ball data and an

axial ROI within the body of the corpus callosum as a seed.

Maximum intensity projections of the FC values, of the path strengths obtained

from graph-based tractography (GT) and of the index of connectivity from probabilis-

tic tractography are presented in Fig. 6.13. We can observe that GT (Fig. 6.13b) resolves

lateral portions of the corpus callosum (indicated by black arrows), but the strengths as-

signed to them are relatively low. Furthermore, paths belonging to the crossing corona

Figure 6.13: (a) Coronal maximum intensity projection of the raw FC values using
the Q-ball FCT and an axial seed ROI in the body of the corpus callosum. (b)
Coronal maximum intensity projection of the path strengths calculated using graph-
based tractography and the Q-ball ODFs to de�ne graph weights. (c) Coronal
maximum intensity projection of the index of connectivity calculated using two-
tensor probabilistic tractography. Colour coding is qualitatively the same in all cases
with dark red being low and white being high.
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radiata are assigned a high strength, meaning that propagation through the crossing

at the centrum semiovale has given rise to false positive connections. For multi-tensor

probabilistic tractography (Fig. 6.13c) lateral callosal tracts on the left hemisphere can

be differentiated from the background. However, a higher index of connectivity is as-

signed to the crossing corona radiata tracts on the right hemisphere compared to the

right callosal tracts. Furthermore, the inherent reduction of connectivity with distance

from the seed due to the repetitive Monte-Carlo sampling is evident, especially in the

right hemisphere. On the other hand, FCT propagated through the crossing bilaterally

and assigned relatively high values only to corpus callosum paths. This is indicative

of the algorithm’s ability to propagate correctly through crossing configurations. It

should be pointed out that apart from using the same data for all three algorithms,

FCT and GT also utilized exactly the same ODFs. However, FCT has benefitted from

the utilization of multiple affinities (i.e. links) between neighbours in crossing regions

that reflect the existence of multiple fibre populations.

FCT can be combined with any technique that provides orientation estimates. So

far, DTI and Q-ball orientations were utilized. The geometrically-constrained two-

tensor model and the regularized two-tensor approach were also employed to estimate

fibre orientations on the low b value DTI dataset. Fig. 6.14 shows fuzzy connected-

ness maps using these estimates. Coronal maximum intensity projections are shown of

thresholded FC values with: Q-ball orientations, orientations from the geometrically-

constrained two-tensor model of (Peled et al., 2006) and orientations from the regular-

ized two-tensor model. Regularization for this HARDI dataset improved more the cp

model selection mask, rather than the orientations themselves. Lateral callosal paths

were resolved bilaterally in all cases.
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Figure 6.14: Coronal maximum intensity projection of thresholded FC values using
(from left to right): the Q-ball orientations from the high b value dataset, the
geometrically-constrained two-tensor model orientations from the low b value dataset
and the regularized two-tensor model orientations from the low b value dataset
(δω = 2.5o, 30 iterations) . An axial seed ROI in the body of the corpus callosum
was used in all cases. Results are superimposed on fractional anisotropy maps.

6.6 Discussion

A new fuzzy framework to assess white matter anatomical connectivity in the brain

was presented. Fuzzy connectedness tractography is a global tracking approach that

utilizes any number of fibre orientations per voxel to produce distributed connected-

ness maps, so that every image voxel is eventually connected to the seed through some

path. A connectedness value for a voxel characterizes how feasible the path connecting

it to the seed is, given an affinity function. This value is computed by trying all possible

valid connections between a voxel and the seed and finding the strongest. The smallest

affinity, i.e. the weakest link, along this strongest path will be the connectedness of the

voxel to the seed. The affinity employed here reflects the anatomical assumption of

slowly varying fibre orientations along WM paths. Thus, the computed connectedness

values provide a relative measure for path feasibility that depends on the orientational

coherence along a path. The algorithm differentiates between voxels that exhibit orien-

tational coherence to the seed and the background.
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Comparison with other tractography algorithms

Apart from its fuzzy nature, the algorithm expands other distributed tractography

methods (Campbell et al., 2005; Iturria-Medina et al., 2007; Jackowski et al., 2005; Parker

et al., 2002; Staempfli et al., 2006) in two ways: a) FCT propagates paths using a rela-

tively high angular resolution and b) it can utilize any number of fibre orientations per

voxel and propagate through fibre crossings. It can thus be combined with any DW

reconstruction technique that provides multiple orientation estimates, such as multi-

tensor models (Tuch et al., 2002), spherical deconvolution (Tournier et al., 2004), persis-

tent angular structure (Jansons and Alexander, 2003) and diffusion spectrum imaging

(Wedeen et al., 2005).

In this chapter, Q-ball imaging and multi-tensor models were used as working ex-

amples to estimate multiple orientations per voxel. Q-ball imaging has been combined

with other types of distributed tractography, such as front evolution (Campbell et al.,

2005) and graph-based tractography (Iturria-Medina et al., 2007). However, both pre-

vious studies define a single weight between any two voxels, utilizing the whole Q-ball

ODF, regardless of the number of fibre populations being present in each voxel. In the

case of a fibre crossing, this may allow propagation towards all crossing orientations

and artificially elevate the connectivity index of crossing tracts over paths belonging

to the tract of interest, as shown in Fig. 6.13b. The approach followed here, defines -if

needed- many affinities between two voxels and propagates more strongly along the

appropriate orientation in the case of crossings. The analog to this method for front

evolution techniques (Campbell et al., 2005; Jackowski et al., 2005; Parker et al., 2002;

Staempfli et al., 2006; Tournier et al., 2003) would be the initialization and propagation

of multiple fronts in crossing regions; this is not tackled by the algorithms found in the

literature.

FCT produced reasonable connectedness maps in many different WM regions (Fig.

6.7 - Fig. 6.10). Given that validation of a tractography algorithm is in general dif-

ficult and impossible on a single subject basis, advanced streamline tractography us-

ing Q-ball orientation estimates and the same seed ROIs was performed; this at least

shows that the FCT results are commensurate with the, now familiar from the liter-

ature, streamline results (Catani et al., 2002; Mori et al., 2005). Connectedness maps

expanded the connectivity picture from streamline tractography (Fig. 6.7 - Fig. 6.9), ex-
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hibiting greater branching. Even when only the DTI orientations were used, the results

seem more distributed than the Q-ball streamlines, as shown in the cingulum (Fig. 6.9).

It should be pointed out, that FCT operates on the discrete image grid and connects

voxels centre-to-centre, in order to identify the strongest path between two voxels ac-

cording to a global criterion. Streamline tractography can move anywhere within a

voxel using locally greedy criteria. This can also contribute to the differences observed

between the two techniques. Furthermore, when multiple orientations are available in

a single voxel, the streamline tractography method employed here selects one of the

available orientations. FCT will consider all available orientations and assign a con-

nectedness value to each of them, depending on how coherently connected they are to

the seed.

Compared to probabilistic streamline tractography approaches (Behrens et al., 2003;

Friman et al., 2006; Jones and Pierpaoli, 2005; Parker et al., 2003), FCT assigns a fuzzy

rather than a probabilistic index of connectivity. The latter gives the number of times a

voxel has been traversed by a tract over repetitive streamline propagations in a Monte-

Carlo fashion and is inherently sensitive to the distance from the seed (Fig. 6.13c).

The former quantifies the fuzziness of paths and provides a relative measure of con-

nectivity, given an affinity function. The affinity reflects the anatomical assumption of

smoothness in WM paths and quantifies the coherence of adjacent fibre orientations. It

can be influenced by factors that affect the estimation of orientations, such as limited

spatial resolution, noise, diffusion profile reconstruction limitations and partial vol-

ume artefacts, and these factors can contribute to the observed spread of the FC values.

Clearly, fuzzy and probabilistic indices are different and their interpretation in terms

of absolute anatomical connectivity remains an open question for further investiga-

tion. Nevertheless, the fuzzy framework presented here extends the binary framework

of streamline tractography, where only two outcomes are allowed ("not connected" vs

"connected"), and relates to it more naturally rather than to probabilistic approaches.

Similar to all tractography algorithms, FCT can be influenced by unresolved par-

tial volume artefacts. For example, false positives are evident in Fig. 6.10d, where paths

of the inferior longitudinal fasciculus are shown connected to Meyer’s loop. However,

in most cases these artefacts were characterized by relatively lower connectedness val-

ues.
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Fuzzy connectedness and Dijkstra’s algorithm

An interesting relationship can be established between DTI FCT (Algorithm 6.1) that

uses one affinity per voxel pair and graph-based tractography (Iturria-Medina et al.,

2007). The former utilizes the fuzzy connectedness algorithm (Udupa and Samarasek-

era, 1996), the latter uses Dijkstra’s algorithm (Dijkstra, 1959), a commonly used graph-

searching method that solves the shortest path problem between graph nodes (Cormen

et al., 2002).

As noted in (Carvalho et al., 1999; Nyul et al., 2003), fuzzy connectedness can be

seen as a modified version of Dijkstra’s algorithm. If we refer to Algorithm 6.1, once an

element i is dequeued (line 6 of Algorithm 6.1), FC(i) has reached its optimal value and

will no longer be updated (Nyul et al., 2003). This is because, once i is dequeued, it has

the maximum FC value amongst all queue elements and any subsequent voxel j that

is updated will have FC(j) ≤ FC(i) (Note that FC(j) = fmin = min[FC(i), µ(i, j)] ≤
FC(i)). The same stands for Dijkstra’s algorithm; by the time an element is dequeued,

it will have reached its optimal strength.

Therefore, when one seed voxel s is used, the only implementation difference be-

tween the two algorithms is the relaxation condition fmin = min[FC(i), µ(i, j)] (line 9 of

Algorithm 6.1). Replacing this condition with fmin = FC(i) · µ(i, j) and interpreting FC

and µ as path strength and graph weight respectively (rather than fuzzy connectedness

and affinity), converts FCT to the graph-based tractography of (Iturria-Medina et al.,

2007).

What is, then, the performance difference between the two methods? Imagine a

scenario where the weakest affinity µx of a path is at a point x, near the seed and this

is generally smaller than most of the affinities in the image grid (e.g. due to a very

curved transition at x). FCT will then identify this weakest link and will assign to x

and to all voxels that follow with higher affinities, the same connectedness value equal

to µx. That will make differentiation between paths after x difficult. On the other hand,

graph-based tractography, due to its multiplicative relaxation condition, can assign a

different strength to each voxel after x (unless a weight of 1 exists) and, thus, will not

suffer from such an issue.

However, it has been shown (Fig. 6.13) and discussed that when multiple orienta-
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tions are estimated within voxel, FCT treats them more appropriately due to the multi-

ple affinities defined. In the next chapter, the benefits from combining the advantages

of the two methods will be illustrated.

Assumptions and future work

FCT is governed by certain assumptions, which should be pointed out. The local ODF

maxima have been used as orientation estimates from Q-ball images, an approach fol-

lowed in many recent studies (e.g. (Haroon et al., 2009)). This approach has been

shown to introduce bias in the estimated orientations, due to the finite width of each

peak (Zhan and Yang, 2006). However, obtaining orientation estimates from the ODF

peaks has been utilized here as an example. As pointed out before, FCT will work

with any method that provides fibre orientations, such as the tensor decomposition

approach described in (Schultz and Seidel, 2008) that does not bias the estimates.

Furthermore, orientational uncertainty, which is the basis for probabilistic tractog-

raphy (Behrens et al., 2003; Friman et al., 2006; Jones and Pierpaoli, 2005; Parker et al.,

2003) is not currently considered. Voxel similarity is assessed using strictly the fibre

orientation estimates. However, the algorithm is independent of the affinity function,

therefore more advanced affinities that incorporate uncertainty or whole ODF informa-

tion can be used. An example towards this direction is shown in the next chapter.

The discreteness of the algorithm both in the spatial and the orientational domain

may potentially cause problems, especially when very sharp turns are present within

the range of a very few voxels. To overcome these situations, an interpolated image

grid was used and the angular resolution of path propagation was increased (Fig. 6.3).

As it has been shown, the results were satisfactory in many WM regions. A future

extension of the current framework might consider more than one location within a

voxel, so that not only centre-centre connections exist. A further remedy will be the in-

corporation of curvature in the affinity function, which currently penalizes deviations

from straight line connections.

Identifying the background connectedness intensity and keeping only the relevant

paths is a challenging issue in distributed tractography techniques. In this study, a

histogram-driven threshold was used to choose the most strongly connected voxels to
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the seed. More advanced methods that involve hypothesis testing (Morris et al., 2008)

may be used.

The fact that the connectedness values are based on the weakest link along a path

can make them sensitive to noise. Variations of the fuzzy connectedness algorithm exist

with increased robustness against noise. Scale-based fuzzy connectedness (Saha et al.,

2000) is an example and scale-based FCT can be a direct extension of the algorithm.

Summary

A fuzzy distributed algorithm to assess white matter connectivity from diffusion MRI

orientation estimates was presented. Fuzzy connectedness tractography can use any

number of fibre orientations per voxel and can therefore be combined with any model-

based or model-free reconstruction technique that provides such estimates. In this

chapter, its performance was illustrated using imaging data from two popular pro-

tocols, diffusion tensor and Q-ball imaging. The algorithm checks all valid paths on

the discrete image grid that connect two voxels of interest and assigns a connectedness

value between them, representative of the weakest link of the strongest path. Under

the assumption that WM tracts exhibit orientational coherence, it can differentiate be-

tween regions that are highly connected to a seed and paths that are not. Its flexibility

in the way neighbouring voxel similarity is assessed, allows the incorporation of dif-

ferent affinity functions and image modalities that may even be application-specific.
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Appendix A: Fuzzy connectedness tractography algorithm

The FCT algorithm is based on the label-setting fuzzy connectedness algorithm pre-

sented in (Nyul et al., 2003). A priority queue, implemented as a d-ary (d=4) heap

(Kruse and Ryba, 2000), is used as an auxiliary data structure. Each queue element

(i, l) comprises of the coordinates of voxel i and an index l identifying which of the L

orientations of voxel i the element refers to. For each of the queue elements, a fuzzy

connectedness value FCl(i) is stored and elements are sorted so that the one with the

maximum connectedness value is always the first element of the queue. The presented

implementation utilizes N ≥ 1 fibre orientations per voxel and a 5x5x5 neighbourhood.

Neighbouring elements are sorted, so that nearest neighbours are considered first and

next nearest neighbours follow during each propagation step. The algorithm utilizes a

function Update() defined below.

Function 6.2 Update(j, k, i, l, val)

1: FCk(j)=val;

2: Memoryk(j)=(i,l);

3: if (j,k) /∈ Queue then

4: Enqueue (j,k);

5: else

6: Change the Queue key of (j,k);
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Algorithm 6.3 Fuzzy Connectedness Tractography

1: for all image voxels a do

2: for each orientation n of a do

3: FCn(a)=0; Memoryn(a) = unde f ined;

4: for all seed voxels s do

5: for each orientation n of s do

6: FCn(s)=1; Enqueue (s,n);

7: while Queue 6= Empty do

8: Dequeue element (i,l) with maximum FC value;

9: Use Memoryl(i) to determine valid neighbours;

10: for all valid neighbours j of i do

11: for each orientation k of j do

12: fmin=min[FCl(i),µlk(i,j)];

13: if fmin>FCk(j) then

14: if j is a nearest neighbour then

15: Update(j, k, i, l, fmin);

16: if j is a next nearest neighbour then

17: c,d = nearest neighbours connecting j to i;

18: Choose amongst orientations in c, the p that is closest to k;

19: Choose amongst orientations in d, the q that is closest to k;

20: (z,t) = Pick from (c,p), (d,q) the one with higher FC;

21: Update(j, k, z, t, fmin);

22: if fmin>FCd(z) then

23: Update(z, t, i, l, fmin);

24: for all image voxels a do

25: FC(a)=max
n

[FCn(a)];
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7
Graphs and multigraphs for white matter

tractography

Overview

In the previous chapter, connections between fuzzy connectedness and graph-based

tractography were discussed. The benefit from the consideration of multiple voxel

affinities in crossing regions was illustrated. In this chapter, a similar idea is applied

to graph-based tractography algorithms, to achieve robust propagation through cross-

ing fibre configurations, as depicted by Q-ball imaging ODFs. First, graph theory for

tract reconstruction is presented. Then, building up on this theory, a new algorithm

that utilizes a multigraph representation of the brain volume is derived. Each image

voxel is treated as a graph node and graph arcs connect neighbouring voxels. Weights

representative of both structural and diffusivity features are assigned to each arc. To

account for the existence of crossing fibre populations within a voxel, multiple weights

between neighbouring voxels are defined -where appropriate-, each representative of

a different combination of single-fibre compartments. The new structure, termed a
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multigraph, is searched exhaustively, but efficiently, to find the strongest paths and as-

sign connectivity strengths between a seed and all the other image voxels. Compared

to existing graph-based tracking methods, the new approach improves the connection

strengths through fibre crossing regions, reducing the strengths of paths that are less

anatomically plausible.

Contributions of this chapter

• White matter reconstruction using elements of graph theory is presented.

• The multigraph-based representation of a brain volume is introduced. Multi-

graph-based tractography is described as a generalization of existing methods

that propagates more robustly through fibre crossings.

• A quantitative comparison of the new method is performed with graph-based

and fast marching tractography.

• In-vivo tracking results are obtained on Q-ball imaging data. Using the path

strength as an index of connectivity, thalamic parcellation is performed.

Publications

Contributions from this chapter have appeared in the following:

• S. N. Sotiropoulos, L. Bai, P. S. Morgan, C. S. Constantinescu and C. R. Tench.

Brain tractography using Q-ball imaging and graph theory: Improved connec-

tivities through fibre crossings via a model-based approach, NeuroImage, 49:2444-

2456, 2010.

• S. N. Sotiropoulos, C. R. Tench, P. S. Morgan and L. Bai. Robust graph-based

tracking through crossing fibre configurations, Proceedings of the IEEE International

Symposium on Biomedical Imaging (ISBI), pp. 1394-97, Boston,USA, June 2009.

• S. N. Sotiropoulos, L. Bai, P. S. Morgan and C. R. Tench. Graph-based tractogra-

phy for robust propagation through complex fibre configurations, Proceedings of

the ISMRM Annual Meeting, p. 852, Honolulu, USA, April 2009.
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7.1 Introduction

Global tractography techniques offer an alternative to local, streamline-based approa-

ches (Behrens and Jbabdi, 2009). Front propagation methods (Campbell et al., 2005;

Parker et al., 2002) were the first that defined optimal paths according to a global cri-

terion. In more recent studies, a weighted graph representation of the image has been

utilized (Iturria-Medina et al., 2007; Lifshits et al., 2009; Zalesky, 2008) to search for op-

timal paths. These are identified using modified versions of shortest-path algorithms

(Cormen et al., 2002). The graph-based methods, as well as most of the front prop-

agation methods, are inherently discrete in the orientation and spatial fields. How-

ever, compared to the streamline-based approaches and their probabilistic counter-

parts, they combine a) converged indices of connectivity to a seed for all image voxels

(Iturria-Medina et al., 2007; Parker et al., 2002), b) connectivities that do not drop sys-

tematically with the distance from the seed (Iturria-Medina et al., 2007; Parker et al.,

2002), c) inherent ability to incorporate information from other imaging modalities

(Iturria-Medina et al., 2007), d) inherent ability to deal with fibre branching in a single-

pass execution (Iturria-Medina et al., 2007; Parker et al., 2002) and e) relatively short

execution times (Parker et al., 2002).

Despite the potential of such methods, only a few studies that utilize Q-ball imag-

ing and non-streamline tractography exist (Campbell et al., 2005; Iturria-Medina et al.,

2007). For these studies, propagation in each step is determined using the whole Q-ball

ODF of the current voxel, and in crossing regions connections are distributed equally

towards all crossing directions, regardless of the path propagated so far. Therefore,

anatomically unlikely connections may be identified. In this chapter, this limitation is

discussed and a new graph-based tractography algorithm that deals more appropri-

ately with crossing regions is presented. The algorithm takes into account multiple

fibre populations within a voxel, when partial volume exists, by treating the image as

a multigraph. It is then possible to distribute the connectivities in a weighted man-

ner, with the most appropriate fibre population (or populations) obtaining the highest

weight. The aim is thus to reduce the connection strengths of paths from a seed that are

less anatomically plausible, without using exclusion/inclusion ROIs that require some

prior knowledge. Results are presented on simulated data as well as on a group of

healthy human subjects and quantitative comparisons are performed with both Q-ball
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based front evolution tractography (Campbell et al., 2005) and the recent graph-based

tractography (Iturria-Medina et al., 2007).

7.2 Brain tractography using graph theory

An image can be considered as a non-directed weighted graph G = [V, A], with V

being the set of graph nodes and A the set of graph arcs. Each voxel i in the image is a

graph node and a neighbourhood system is chosen to define the set of neighbours F
neigh
i

of i. Arcs, a, exist between neighbouring voxels and weights w ∈ ℜ, are assigned to

each arc reflecting both diffusivity and structural information of the connecting voxels.

According to (Iturria-Medina et al., 2007) the weight of the arc between two neighbours

i and j is symmetric and defined as:

w[a(i, j)] ≡ wij = wji = Pmat(i) · Pmat(j)
[

PDi f f (i, rij) + PDi f f (j, rji)
]

. (7.1)

The term Pmat(i) represents the probability of voxel i belonging to a specific tissue

type. It can be computed by performing probabilistic tissue segmentation on structural

images. PDi f f (i, rij) is a pseudo-probability term of observing diffusion from i along

the direction rij that connects the centres of i and j. It can be computed by integrating

the diffusion ODF over a solid angle ω around the vector rij. The angle ω is determined

by the neighbourhood system employed, i.e. the number of arcs arising from a node

(for a 3x3x3 neighbourhood, ω = 4π/26). Then:

PDi f f (i, rij) =
1

Z
∫

ω

ODF(i, r)dS ≈ 1

Z
NQ

∑
q=1

ODF(i, rq)∆Sq , (7.2)

where the integral is approximated by a sum of ODF terms evaluated at NQ points rq

contained in the solid angle cone and obtained from an icosahedral tessellation. The

normalization constant Z ensures that the maximum value of the set {PDi f f (i, rij), j ∈
F

neigh
i } is 0.5. Using the above definitions the arc weights are w ∈ [0, 1]. Note that in

(Zalesky, 2008), the weights are defined by integrating the Bayesian posterior probabil-

ity of fibre orientation rather than the ODF.

Given the weights, paths can be defined in the image graph as chains of neigh-
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bouring voxels. The strength M of a path C that comprises of X nodes i1, i2, ...iX or

equivalently of X-1 arcs a(i1, i2), a(i2, i3), ...a(iX−1, iX) is given by:

MC ≡ Mi1...iX
= MiX ...i1 = wi1i2 · wi2i3 · ...wiX−1iX

. (7.3)

Many paths exist between any two voxels. The strongest path between them can

be found by searching the graph exhaustively to maximize M. In (Iturria-Medina et al.,

2007; Zalesky, 2008) a modified version of Dijkstra’s algorithm (Dijkstra, 1959) is used

to perform this search. To force anatomically realistic path propagation, a 90o maxi-

mum curvature threshold is imposed between two successive path steps. The strongest

path between a seed and all image voxels can be found and the strengths of these paths

form a new image. In (Zalesky, 2008) this strength map is treated as a connectivity

image, while in (Iturria-Medina et al., 2007) strengths are utilized to keep the most rel-

evant paths propagating from a seed and exclude the background. The smallest arc

weight along each of these non-background paths is then used as a connectivity index.

Incorporating Q-ball ODFs - Problem outline

Regardless of the chosen connectivity index, strengths reflect the way paths are propa-

gated and are used to infer anatomically relevant paths from a seed (Iturria-Medina

et al., 2007; Zalesky, 2008). The question addressed here is whether the calculated

strength maps allow anatomical inference, when Q-ball derived ODFs are used with

the previous framework to propagate through crossing regions.

One would anticipate that replacing DTI ODFs, as used in previous studies (Iturria-

Medina et al., 2007), with multi-peaked Q-ball ODFs should allow more appropriate

propagation through crossing regions. A simulated example of a perpendicular cross-

ing shown in (Iturria-Medina et al., 2007) verifies the expectation for this particular

situation.

However, the algorithm is not always successful in describing the expected pic-

ture. Fig. 7.1 shows the strength maps obtained using Q-ball ODFs in the previous

framework, for two simulated straight crossings of 70o (Fig. 7.1b) and 60o (Fig. 7.1c),

in a noise-free environment. For each voxel i the strength M of the strongest path con-

necting i to the seed is plotted. In both cases, a seed ROI is placed within the horizontal
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tract. For the 70o crossing, propagation strength is correctly high for the horizontal

tract, but it is also undesirably elevated for the diagonal tract. Even worse, for the 60o

crossing, propagation to the diagonal tract is favoured and connectivity is restricted

within the horizontal tract. This problem is absent for a perpendicular crossing due

to the 90o curvature threshold. It should be pointed out that in the case of DTI ODFs,

which lack directionality in crossing regions, propagation to all crossing tracts might

be acceptable.

Figure 7.1: (a) Di�usion ODFs calculated for a phantom with a 70o crossing. ODFs
are colour-coded with the colour scheme plotted on the surface of a sphere. Strength
maps for (b) 70o and (c) 60o crossing phantom obtained using conventional graph-
based tractography and the seed ROIs indicated with the black arrow. Strengths are
colour-coded as shown in the legend.

The problems highlighted above arise in crossing regions from the consideration

of the whole ODF in each propagation step. Q-ball ODFs may comprise of many fibre

compartments. Once a path reaches a voxel where fibre crossings occur, it can propa-

gate towards any or all crossing tracts equally regardless of its history; at least within

the 90o turning threshold. In the example of Fig. 7.2a, all weights wji, wi f and wid will

be high due to the relative ODF configuration. As a result, the path j-i-d will have

an undesirably high strength. The problem can sometimes be masked by the discrete

nature of path propagation, however it is in general present even for high crossing an-

gles (70o), as shown in Fig. 7.1. Note that the ODF-driven fast marching tractography

(Campbell et al., 2005) will be influenced by the same factor, since the whole ODF is

considered for the speed calculation. This will be illustrated in the results section.
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Figure 7.2: Graph structure in the case of a crossing in (a) conventional graph-based
tractography (Iturria-Medina et al., 2007), (b) multigraph-based tractography. For
each node the di�usion ODF is plotted. All Q-ball ODFs are sharpened (raised to
the third power). The N=2 ODF components plotted for voxel i in (b) correspond
to the two Gaussian ODFs estimated using a two-tensor model in this voxel.

7.3 Multigraph-based tractography

To alleviate the problem, the weight calculation, the graph structure, and the graph

searching routine are modified. It is assumed that ODFs with N peaks correspond to

N crossing populations and can be decomposed to N single-peaked ODFn(n = 1..N)

components, each representative of a different population; this is illustrated in the fol-

lowing section. Weights win jl are then defined between the nth(n = 1...N) fibre popu-

lation of voxel i and the lth(l = 1...L) population of voxel j, N and L being the number

of ODF peaks of the two voxels respectively. This gives N × L weights between i and

j. The diffusivity terms used to compute graph weights are obtained by integrating the

nth and lth single-peaked ODF components of voxels i and j, for example:

PDi f f−n(i, rij) =
1

B
∫

ω

ODFn(i, r)dS , (7.4)

where the normalization constant B ensures that the set {PDi f f−n(i, rij), j ∈ F
neigh
i , n ∈

[1, N]} has a maximum value of 0.5. The new graph weights are:

win jl = wjl in
= Pmat(i) · Pmat(j)

[

PDi f f−n(i, rij) + PDi f f−l(j, rji)
]

. (7.5)

To account for the multiple weights between neighbours, a voxel i is represented

in the image graph by N instances, one per population (Fig. 7.2b). Each voxel instance
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in is treated as a separate element in the graph that keeps the same graph connections

as i. Due to the existence of multiple instances, rather than calculating a single strength

value between each image voxel i and the seed s, a strength vector Mi...s with length N is

calculated per voxel; nth vector entry Mn
i...s corresponds to the strength of the strongest

path connecting the nth fibre population in to s.

The path propagation follows the idea of Dijsktra’s algorithm (Dijkstra, 1959). The

instances of all image voxels are initially inserted into a queue and are assigned a zero

strength. The seed is also inserted with a strength of one. In each iteration of the al-

gorithm, the instance in with the highest strength is removed from the queue. For in,

the strength of the paths from the seed s, through in, to all instances jl of neighbours

j ∈ F
neigh
i are evaluated (Eq. (7.3)). If a new path strength is found to be larger than

the previous (i.e. of a path that did not go through in), the best path connecting jl to

the seed s is updated and the instance in is included in this path. Only a subset V
neigh
i

of the neighbours of i that require a curvature change of less than 90o are considered.

Effectively, all neighbouring instances l = 1...Lj, j ∈ V
neigh
i (Lj being the number of in-

stances in j) are tried; this gives ∑
j

Lj, j ∈ V
neigh
i combinations for instance in. Iterations

continue until all instances are removed from the queue and strength vectors Mi...s are

calculated for all voxels i in the image. Then, a post processing step finds for each voxel

i the maximum of the Mn
i...s values to obtain a scalar map of connection strengths.

The calculated path strengths depend on the alignment of ODFs along the path,

with higher strengths meaning better alignment. The consideration of multiple in-

stances where appropriate, effectively allows a low curvature prior to be imposed

through fibre crossings.

The graph searching algorithm presented in (Iturria-Medina et al., 2007) is mod-

ified to account for the changes described above. The presence of multiple weights

between two nodes is equivalent to the presence of multiple arcs connecting the two

nodes. This generalized graph structure is known as a multigraph (Zwillinger, 2003)

and the new method is called multigraph-based tractography (MGT). MGT tests in

crossing regions all the possible combinations between fibre populations and, depend-

ing on the seed location, allows the appropriate ones dominate. In the example of Fig.

7.2b, the path j1− i1− f1 will now have a much larger strength than the path j1− i2−d1,

which is less anatomically plausible. A detailed description of the algorithm is given
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in the Appendix.

7.4 Estimation of multiple single-peaked ODFs within a voxel

As shown before, given a set of Q-ball images (Tuch, 2004) the diffusion orientation

distribution function (ODF) at voxel i can be estimated (Descoteaux et al., 2007). ODFs

with N peaks are assumed to correspond to N crossing fibre populations. Under this

assumption, an appropriate single-fibre component ODFn can be assigned to the nth

population. A model-based approach to estimate these different components is pro-

posed here.

The peaks of the ODF are detected using a finite difference scheme, similar to (De-

scoteaux et al., 2009). Uniformly distributed points on the sphere are obtained using

an icosahedral tessellation. The ODF is sharpened (raised to the 3rd power) and the

ODF values for each of the tessellation points are evaluated. Candidate peaks are iden-

tified at points, where the ODF is larger than the neighbouring ODF values and also

exceeds a threshold (50% of the maximum ODF value used here). Since noise artefacts

can increase the number of detectable local maxima, candidate peaks are subsequently

filtered. The filtering represents the belief that an ODF at the b values used here, can-

not resolve crossings of small angle (Cho et al., 2008). In an iterative fashion, peaks

that are separated by an angle less than a minimum threshold α from the others are

discarded. In each iteration the angle between all pairs of candidate peaks p is calcu-

lated. For each p, a counter keeps the number of other peaks that are within an angle α.

The peak with the maximum counter value is removed at the end of each iteration. If

more than one peaks have the same counter value, then p with the smallest ODF value

is removed. Iterations are continued until the counter value of all remaining peaks is

zero. An α = 45o was used.

In voxels with 1 < N ≤ 3 peaks, a mixture model of prolate diffusion tensors

(Alexander and Barker, 2005) is fitted to the signal using a Levenberg-Marquardt ap-

proach (Press et al., 1992). The number of fitted tensors N is equal to the number of
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ODF peaks detected. The model at a given voxel is:

Sk = S0

N

∑
n=1

fnexp(−bgT
kDngk), with

N

∑
n=1

fn = 1 and Dn = (λn1 − λn2)en1eT
n1 + λn2I.

(7.6)

In the above formulas, Sk is the DW signal obtained with a diffusion-sensitizing mag-

netic field gradient of b factor and direction gk, fn is the volume fraction of the prolate

tensor Dn with principal eigenvalue, secondary eigenvalue and principal eigenvector

λn1, λn2 and en1, respectively. The nth tensor is aligned with the nth ODF peak and only

its eigenvalues are estimated (see Appendix). Then, the nth Gaussian ODF component

in voxel i will be (see Eq. (3.11)):

ODFn(i, u) =
L

√

uT · D−1
n · u

, (7.7)

with L being a normalization constant. In (Iturria-Medina et al., 2007), the ODFs are

raised to the third power to achieve sharpening. The same approach has been followed

here.

Voxels with N > 3 were considered isotropic and their Q-ball ODFs were used

without being decomposed. The ODF was used without decomposition for voxels with

N = 1, as well.

7.5 Increasing angular resolution

Similar to fuzzy connectedness tractography described in the previous chapter, MGT

propagates paths from a voxel to its neighbours. Thus, the neighbourhood system de-

termines the number of candidate propagation directions r. A straightforward imple-

mentation uses the 3x3x3 neighbourhood, i.e. 26 neighbours. The angular resolution of

path propagation can be increased by increasing the neighbourhood size to 5x5x5, in-

cluding next nearest neighbours (Fig. 7.3). This gives 124 neighbours, which reduce to

98 non-parallel propagation directions in 3D (e.g. directions to g and d are the same).

The solid angle is then ω = 4π/98. However, neighbours that are not directly con-

nected to the focal voxel i exist, such as voxel j in Fig. 7.3. If the weight wij is the

highest amongst the other neighbours of j, a strongest path will include an i to j transi-
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tion, leaving a gap in the strength map. To avoid discontinuities in paths, one nearest

neighbour of the focal voxel is required to be included in the path. More specifically,

for each next nearest neighbour j (light gray in Fig. 7.3), the two nearest neighbours f

and g (dark gray in Fig. 7.3) that are traversed by the vector rij are considered. From

amongst the fibre components of f and g, the one with the highest connection strength

Mh to the seed s is then chosen. If the strength Mh is smaller than the strength of j, the

value Mj...s is assigned to Mh. This assignment, for all identified gaps in the strength

map, is performed at the end of the algorithm as a postprocessing step.

Figure 7.3: Di�erent neighbourhood systems of focal voxel i. Left: 3x3x3 neighbour-
hood, Right: 5x5x5 neighbourhood. A subset of within-slice neighbours is presented.
Black arrows represent candidate directions r for path propagation. Nearest neigh-
bours are coloured with dark gray, next nearest neighbours with light gray.

7.6 Q-ball fast marching tractography

For comparison purposes, the Q-ball driven fast marching tractography (Campbell

et al., 2005) has been implemented. A 3x3x3 neighbourhood was employed and ODFs

were normalized and thresholded at their mean value (Campbell et al., 2005). Front

propagation speed values from a voxel i were computed using the ODF value along

directions rij, j ∈ F
neigh
i . The fast marching tractography algorithm (Parker et al., 2002)

was used to propagate a front from a seed. A path Cj...s was then defined for each image

voxel j to the seed s by going backwards through the map of front arrival times. Paths

that had a curvature change of more than 90o along their length were discarded. The

connectivity of voxel j was the smallest speed value along the path Cj...s and was used

to identify the most relevant paths (Campbell et al., 2005); contrary to graph-based

methods that use the path strengths (Iturria-Medina et al., 2007; Zalesky, 2008).
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7.7 Data and processing

Simulations

Phantoms containing two straight tracts, crossing at various crossing angles (60o to

90o), were numerically generated (Fig. 7.4). The noise-free DW signals in each voxel

were simulated using the DTI model (Basser et al., 1994a) in single-fibre voxels and a

mixture model (Eq. (7.6)) in crossing voxels. Sixty-one evenly spaced DW directions

(Cook et al., 2007) with b=3000 s/mm2 were used. The individual tensors had fractional

anisotropy FA=0.8 and trace=2.1x10−3 mm2/s.

Zero-mean Gaussian noise was added in quadrature (Kingsley, 2006b) to simu-

late the Rician nature of the MRI signal (Gudbjartsson and Patz, 1995). Q-ball ODFs

were estimated using a real spherical harmonics (SH) basis with Laplace-Beltrami reg-

ularization (regularization parameter=0.006) (Descoteaux et al., 2007) and a maximum

SH order of 6. Up to two peaks were identified per ODF (1 ≤ N ≤ 2), so that a

two-tensor model was fitted in crossing regions. No structural maps were used in

the graph weights (Eq. (7.5)) for the simulations. MGT was quantitatively compared

against graph-based tractography (GT) (Iturria-Medina et al., 2007) and Q-ball driven

fast marching tractography (FM) (Campbell et al., 2005).

In all algorithms, the obtained paths were smoothed for visualization purposes

using a moving average filter, similarly to smoothing filters used before (Campbell

et al., 2005; Parker et al., 2002; Staempfli et al., 2006; Zalesky, 2008). For the nth point

(xn, yn, zn) along a curve, the filtered coordinates were (
n+h

∑
i=n−h

xi,
n+h

∑
i=n−h

yi,
n+h

∑
i=n−h

zi), with

2h + 1 being an odd number, representing the width of the filter. A width of 9 was used

here.

In-vivo images

Q-ball whole-brain scans of five healthy subjects (4 males, 1 female) were performed;

local research ethics committee approval and informed consent were obtained. A single-

shot, spin-echo, echo-planar, diffusion-weighted sequence was used (acquisition ma-

trix 112x112 with in-plane resolution 2x2 mm2) in a Philips 3T Achieva clinical imag-

ing system. A parallel imaging factor of 2 was employed. Eight b=0 s/mm2 images
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were acquired and averaged. Diffusion weighting was applied in 61 evenly spaced di-

rections (Cook et al., 2007) with b=3000 s/mm2 (TE=72 ms, TR=15292 ms). Fifty two

interleaved slices were acquired with a thickness of 2 mm. Also, a standard 3D high

resolution T1-weighted image (MPRAGE) was acquired for each subject. An acquisi-

tion matrix of 256x256 with in-plane resolution 1x1 mm2 was used for 160 slices of 1

mm thickness in sagittal orientation.

DW images were corrected for eddy current distortion and motion using a linear

affine registration implemented in FSL (Smith et al., 2004). Brain was extracted using

BET (Smith et al., 2004). The DW scan for each subject was registered to the respective

MPRAGE using a non-linear registration method (Andersson et al., 2007), to account

for the non-linear EPI distortions. Due to its similar contrast to the MPRAGE, the FA

image was used for the registration. Probabilistic tissue segmentation masks were ob-

tained from the MPRAGEs using SPM5 (Ashburner and Friston, 2005) and tissue masks

were transformed to DW space using the inverse registration. The WM masks were

used in the calculation of graph weights (Eq. (7.5)) to restrict propagation within white

matter. Q-ball ODFs were estimated as in simulations. Up to three peaks were iden-

tified per ODF (1 ≤ N ≤ 3), so that a two or thee tensor model was fitted in crossing

regions and the diffusivity terms (Eq. (7.4)) of the graph weights were obtained.

Thalamic parcellation

MGT’s ability to perform thalamic parcellation was tested. The cortex was divided into

seven regions (Johansen-Berg et al., 2005) and the thalamus was segmented from the

MPRAGE image using FSL’s model-based subcortical segmentation (Patenaude et al.,

2007). Thalamic and cortical masks were transformed to the DW space using the pre-

viously calculated non-linear registration and a nearest-neighbour interpolation. Each

thalamic voxel was used as a seed for MGT and connection strength maps were calcu-

lated. Each seed was assigned the colour code of the most strongly connected cortical

region. To allow propagation within the isotropic thalamus and cortex, both WM and

GM masks were included in the weights (Pmat(i) = PWM(i) + PGM(i) in Eq. (7.5)). To

avoid multi-peaked ODFs that may erroneously arise from a noisy isotropic profile, the

DTI model (Basser et al., 1994a) was fitted in all GM voxels and a diffusion ODF was

obtained using Eq. (7.7). That allowed the algorithm to propagate along one orienta-
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tion within the thalamus and reach WM. Path propagation was stopped whenever a

cortical voxel was reached.

7.8 Results

Simulations

Fig. 7.4 presents the performance of different tractography algorithms on four cross-

ing configurations with crossing angle 90o, 80o, 70o and 60o. A horizontal bundle A

crossing with a diagonal bundle B were simulated; with the orientation of B changing.

No noise was added initially, so that only the limitations of each algorithm are illus-

trated. The algorithms tested were the graph-based tractography (GT) (Fig. 7.4a), fast

marching tractography (FM) (Fig. 7.4b), multigraph-based tractography with a 3x3x3

neighbourhood (MGT3) (Fig. 7.4c) and multigraph-based tractography with a 5x5x5

neighbourhood (MGT5) (Fig. 7.4d). In each case, the strongest paths arising from two

end ROIs (indicated with green arrows, located within both bundles A and B) to the

seed ROI (indicated with a black arrow, located in the horizontal bundle A) are plotted.

The paths are colour-coded with the path strength (or connectivity in the case of FM),

as this varies along their length. All the above algorithms are distributed so all voxels

will be visited by a path of some strength (Fig. 7.1). However, since the seed is in the

horizontal bundle, we would expect to see much higher path strengths within A rather

than within the crossing bundle B.

This is not always the case for GT and FM, as suggested before (Fig. 7.1). As shown

in Fig. 7.4a and Fig. 7.4b, the difference ∆M between the maximum path strengths in

the two crossing bundles becomes quickly negligible, as crossing angle decreases. In

the case of FM, the connectivity reduction after the crossing is due to the speed function

utilized (Campbell et al., 2005). For both algorithms, ∆M is in the order of 6− 8% for

a 70o crossing. For a 60o crossing, GT fails to propagate within bundle A, while ∆M is

roughly 0 for FM. Highly connected regions to the seed are, thus, falsely identified in

these noise-free simulations.

On the contrary, both MGT implementations (Fig. 7.4c and Fig. 7.4d) succeed in

propagating correctly within bundle A and in assigning to it much higher strengths

138



CHAPTER 7: GRAPHS AND MULTIGRAPHS FOR WHITE MATTER TRACTOGRAPHY

compared to B. The benefits from increasing the angular resolution are shown in Fig.

7.4d. Even if the non-relevant paths to the crossing bundle B are much smoother, the

low paths strengths are retained.

Figure 7.4: Results of di�erent tractography algorithms on four di�erent crossing
con�gurations (crossing angle varied from left to right from 90o to 60o). (a) Graph-
based tractography (GT), (b) Fast marching tractography (FM), (c) Multigraph-
based tractography with 3x3x3 neighbourhood (MGT3) and (d) Multigraph-based
tractography with 5x5x5 neighbourhood (MGT5). In all cases, the same seed indi-
cated by the black arrow in (a) has been used. Two target ROIs within the individual
crossing bundles are chosen in each case, indicated by green arrows in (a). Paths
are plotted between the seed and the target ROIs for each tractography algorithm.
Paths are colour-coded with the path strengths for (a), (c) and (d) and with the
connectivities for (b). Phantoms are shown as opaque volumes.
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The behaviour of all algorithms on these crossing configurations was further tested

against noise. The difference ∆M between the maximum path strength in bundle A and

the maximum path strength in bundle B, expressed as a percentage of the strength in

A, was studied across simulations. The seed ROI was kept the same as before. Tables

7.1 and 7.2 show the mean and standard deviation of ∆M across 100 Monte Carlo real-

izations of each phantom, for different tractography algorithms and for different noise

levels (signal to noise ratio (SNR) of 40 and 20, respectively). The qualitative findings

from the noise-free simulations are further verified and quantified. ∆M is close to zero

or non-positive in many cases for FM and GT, especially for crossing angles smaller

than or equal to 70o, indicating that propagation within crossing bundle B is favoured

over propagation within A. On the contrary, when MGT is used, ∆M is always pos-

itive (on average) and at least 33%, in most cases. For 60o and SNR=40 (Table 7.1),

MGT returns path strengths in bundle A 33% higher than in B, when both FM and

GT wrongly favour propagation to B (∆M = −1.9% and −39% respectively). MGT

returns relatively low ∆M values only in the case of SNR=20 and 60o crossing (Table

7.2). These low values are an artefact of the peak finding algorithm that fails, due to

noise, to identify two peaks in some crossing voxels. In these voxels, MGT reduces to

GT and favours the wrong propagation (as GT does). As a result, the mean ∆M values

are decreased (Table 7.2) and the standard deviation is increased (Table 7.1), when a 60o

crossing phantom is used and noise influences model selection.

Crossing Angle GT FM MGT3 MGT5

90o 58.74% (8.16) 31.53% (3.28) 194.2% (10.29) 170.37% (9.5)

80o 47.68% (14.55) 18.52% (2.2) 146.67% (8.33) 84.76% (4)

70o 4.53% (2.79) 5.67% (1.92) 59.03% (4.24) 57.32% (5.22)

60o -39.03% (6.61) -1.91% (1.44) 33.15% (11.6) 37.17% (15.46)

Table 7.1: Mean (st. deviation) di�erence ∆M between path strengths in horizontal
bundle A and crossing bundle B, for various algorithms and crossing angles, across
100 simulations at SNR=40.

It should be noticed that the standard deviation of ∆M is always smaller in FM

compared to all other methods. This reflects the filtering that has been performed on
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Crossing Angle GT FM MGT3 MGT5

90o 46.05% (12.24) 25.02% (5.42) 161.31% (20.1) 133.26% (18.5)

80o 20.26% (9.5) 13.43% (3.48) 114.54% (14.2) 74.02% (8.29)

70o 0.003% (4.67) 2.09% (2.66) 45.85% (10.39) 43.06% (10.78)

60o -31.84% (9.06) -3.5% (3.01) 6.19% (10.7) 12.02% (8.7)

Table 7.2: Mean (st. deviation) di�erence ∆M between path strengths in horizontal
bundle A and crossing bundle B, for various algorithms and crossing angles, across
100 simulations at SNR=20.

the FM connectivity values, which represent the minimum propagation speed along a

path. A similar reduction of the standard deviation will occur if a minimum operation

is used for all the graph-based methods, as shown in (Iturria-Medina et al., 2007).

In-vivo human data

The performance of MGT in human data was explored within the centrum semiovale,

where callosal tracts cross with corona radiata and longitudinal tracts. For the ROIs

chosen, erroneously elevated connection strengths were more evident between the cor-

pus callosum and the corona radiata and the focus is therefore on these two tracts. Fig.

7.5 shows the diffusion ODFs estimated in this region. The individual ODF compo-

nents, estimated in crossing regions using the multi-tensor model, are shown in blue.

These have replaced the multi-peaked Q-ball ODFs. The single-peaked Q-ball ODFs,

which were left unchanged, are shown in red.

Fig. 7.6 shows a comparison between GT and MGT, when a seed ROI in the

body of the corpus callosum (CC) is used. Coronal maximum intensity projections

of strength maps are illustrated. Graph-based tractography (Fig. 7.6a) exhibits similar

behaviour as in simulations, with paths in the crossing corona radiata having rela-

tively high strengths; almost equal in magnitude and in some cases higher than the

strengths of lateral callosal paths (indicated by black arrows). Using MGT (Fig. 7.6b),

propagation within lateral callosal tracts is favoured over the crossing corona radiata.

Increasing the angular resolution of propagation (Fig. 7.6c), allows the algorithm to

visit, through relatively strong paths, even more CC voxels. Despite the smoother path
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Figure 7.5: Di�usion ODFs utilized during MGT execution. Regions from two coro-
nal slices are shown, one at the level of the genu of the corpus callosum (top) and
another at the corpus callosum body (bottom). Q-ball ODFs are depicted with red.
Multiple single-peaked ODF components, estimated via the multi-tensor model, are
shown in blue. All ODFs are sharpened (raised in the third power) and multiplied
by the PWM mask, so that gray matter ODFs are suppressed. The FA map is shown
at the background.

transitions, strengths within the corona radiata are suppressed compared to strengths

obtained using GT (Fig. 7.6a).

For a qualitative comparison, Q-ball probabilistic tractography, as implemented in

CAMINO (Cook et al., 2006), was applied on the same seed. The probabilistic index

of connectivity is presented in Fig. 7.6d. We can observe the systematic reduction
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Figure 7.6: Connection strength maps obtained when seeding in the body of the
corpus callosum. A maximum intensity projection along a coronal plane is shown.
Results obtained using (a) GT, (b) MGT3 and (c) MGT5. In (d) the index of con-
nectivity obtained through Q-ball probabilistic tractography is shown, superimposed
on the FA.

of connectivity with distance, which is not inherently present in either MGT or GT

algorithms.

The aim of computing an index of connectivity is to perform anatomical inference;

regions that are connected to the seed through anatomically plausible paths, should

have the highest connectivity values. To explore this, the strongest paths arising from

the same seed ROI in the body of the CC, with different tractography methods (Fig.

7.7), were plotted. For each method, a threshold was manually selected, so that only

paths within the CC remained (propagation was stopped just after paths started to

appear within the crossing corona radiata). We can observe that for GT (Fig. 7.7a) and

FM (Fig. 7.7b), these strongest paths include mainly the medial portion of the corpus

callosum. A larger CC portion is captured with MGT3 (Fig. 7.7c), with some lateral CC
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paths having high connection strengths. The increased angular resolution MGT5 (Fig.

7.7d) allows a CC reconstruction that covers larger cortical areas in both hemispheres.

Both medial and lateral CC paths are given larger connection strengths than the corona

radiata paths.

Figure 7.7: Most strongly connected paths to a seed ROI in the corpus callosum
obtained using (a) GT, (b) FM, (c) MGT3 and (d) MGT5. Paths are colour-coded
with their strength along their length (or connectivity value for FM). A threshold
has been set in each case, so that paths are stopped just after propagation started
to appear within the corona radiata. The thresholds correspond to the following
distribution percentiles for each case: (a) P97.5, (b) P97, (c) P96 and (d) P95. Paths
are superimposed on fractional anisotropy images. The seed ROI is shown as a white
rendered volume in the body of the corpus callosum.

Given the discrete nature of MGT in both angular and spatial fields, it would be

challenging to test it against a highly curved tract. Fig. 7.8 shows the performance of

MGT5 when seeding within the cingulum bundle. The raw strength values are shown

in Fig. 7.8a. A threshold was interactively chosen based on anatomical knowledge of

cingulum’s trajectory (Mori et al., 2005) and the top 2.5% strengths are shown in Fig.
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Figure 7.8: Connection strength maps obtained when seeding in the cingulum. Max-
imum intensity projections along a sagittal plane are shown. Results are obtained
using MGT5.(a) Raw strength values, (b) Thresholded strengths using the 97.5th

percentile (P97.5=0.27), superimposed on an anisotropy image.

7.8b. The course of the cingulum starting from the sub-genual region, propagating

along the cingulate gyrus and ending up at the parahippocampal gyrus is illustrated.

MGT was further tested against its ability to perform thalamic parcellation. The

cortex was divided into seven regions, shown colour-coded in Fig. 7.9a. Fig. 7.9b

shows an axial slice of the MPRAGE image along with the thalamic parcellation ob-

tained using the high angular resolution version of the proposed algorithm (MGT5).

There is a clear clustering of the thalamic voxels, with the more posterior and medial

ones being more strongly connected to the temporal lobe and the more anterior ones

being connected to the frontal lobe. This organization agrees reasonably with Oxford’s

thalamic atlas (Johansen-Berg et al., 2005), which has been registered from the MNI

space to the subject’s MPRAGE space (Fig. 7.9c). We can observe that the thalamic

clusters follow from posterior to anterior the temporal, occipital, parietal, sensory, mo-

tor, premotor and frontal lobes. Fig. 7.10 presents the connectivity-based thalamic

parcellation on different axial slices in the original DWI space. We can observe that the

clustering is not so consistent for a few voxels in the medial thalamus. These voxels

have a relatively low anisotropy, while some of them, being adjacent to the ventricles,

might have been considered as thalamic voxels, due to errors in the segmentation and

registration processes.

MGT was compared with GT in a group of subjects, to examine how reproducible

the benefits from using the former are (Fig. 7.11). For each subject, an axial ROI cover-

ing the most inferior and medial part of the body of the corpus callosum was used as a

seed for both GT and MGT5. Computation time was in the order of 10 and 30 seconds

for GT and MGT5 per subject, on a 2.8 GHz PC. Fig. 7.11 shows coronal maximum
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Figure 7.9: Thalamic parcellation using cortical masks. (a) Cortex is divided in seven
regions. (b) Thalamic parcellation using MGT5. Each thalamic voxel is assigned the
colour code of the cortical region, to which it is most strongly connected. Results are
superimposed on the MPRAGE image. (c) Oxford's thalamic MNI atlas, registered
on subject's MPRAGE.

Figure 7.10: Thalamic clusters obtained using MGT5 on di�erent axial slices. Inferior
to superior slices are presented from left to right. Results are presented on the DWI
space and are superimposed on the b=0 s/mm2 image.

intensity projections of connection strengths for each subject. Strengths obtained from

each algorithm and subject were thresholded at the 95th percentile of their distribution;

thus, the top 5% connected voxels are illustrated. We can observe that GT assigns very

high strengths to the medial callosal tracts, but the more lateral tracts are suppressed

in favour of crossing tracts. This is not the case for MGT that reproduces a similar CC

pattern across all subjects, comprised of both medial and lateral tracts. MGT performs

better due to its ability to follow an appropriate, rather than any, fibre population in a

crossing region.
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Figure 7.11: Connection strength maps obtained using a seed ROI in the body of
the corpus callosum and GT (left column) or MGT5 (right column), for �ve di�erent
subjects. Strengths have been thresholded at the 95th percentile (P95) in both cases
and a coronal maximum intensity projection operation has been performed.
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7.9 Discussion

A distributed tractography algorithm that finds the strongest path connecting each

voxel to a seed, has been presented. Multigraph-based tractography (MGT) utilizes

graph theory and the orientation information provided by Q-ball images to propagate

through fibre crossings. The advantage of the new method is in assigning appropri-

ate path strengths when a fibre crossing is encountered and reducing strengths of less

anatomically plausible connections. Previous methods that utilize Q-ball ODFs (Camp-

bell et al., 2005; Iturria-Medina et al., 2007) allow directionally unconstrained, except

for a hard 90o limit, propagation to all crossing populations in crossing regions. This

can lead to falsely elevated connection strengths and erroneous propagation within the

wrong bundle, as shown in simulations (Fig. 7.4) and in real data (Figs. 7.6 and 7.11).

Instead, a multigraph representation of the image is employed to account for multiple

fibre populations coexisting in voxels of crossing regions. Given the trajectory so far,

paths to the appropriate bundle dominate and false positive connections are reduced

(Figs. 7.4 and 7.6). A model-based method is used to estimate, within voxel, different

ODF components for different crossing populations, if any. The Q-ball ODFs are used

to extract a model selection mask. The path propagation algorithm is modified and

in crossing regions propagation to each crossing fibre component is explored individ-

ually. This is performed by utilizing the individual single-peaked ODF components

rather than using a multi-peaked ODF as a whole.

Quantitative tractography algorithms provide indices of connectivity that can be

utilized to aid inference on the underlying WM anatomy. However, due to limitations

imposed by the tracking algorithm and/or the scanning protocol, this is not always

feasible. A more indirect method commonly employed uses, apart from the connec-

tivity information, inclusion, exclusion, or target ROIs (Hagmann et al., 2003), which

require a-priori information. The aim of this method was to effectively improve the

ability of performing inference without using any extra information, by reducing lim-

itations arising from the tracking algorithm. Fig. 7.7d shows the large coverage of the

CC that can be obtained using MGT by looking at the top connections to a seed placed

in the CC body. Note that no other ROI is used and that for the same seed other meth-

ods suppress lateral callosal paths in favour of crossing corona radiata paths (Figs. 7.7a

and 7.7b).
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In the implementation presented in this chapter, diffusion ODFs govern path prop-

agation. Fiber ODFs (fODFs) (Descoteaux et al., 2009; Tournier et al., 2007) can be used

instead to compute arc weights; the latter, being a sharpened version of the diffusion

ODFs (Descoteaux et al., 2009), provide more directionality and suppress more perpen-

dicular diffusivity. Fig. 7.12 shows connection strength maps obtained when seeding in

the corpus callosum, using MGT with ODFs and with fODFs respectively. The fODFs

were computed using the deconvolution approach of (Descoteaux et al., 2009). In the

case of multi-peaked fODFs, the multi-tensor model of Eq. (7.6) was fitted and single-

peaked ODF components were obtained using Eq. (7.7). These were then deconvolved

to give single-peaked fODF components. The extra directionality is exploited to in-

crease the lateral CC portion that is assigned high path strengths.

Figure 7.12: Connection strength maps obtained using MGT5 and (a) di�usion
ODFs, (b) �ber orientation distribution functions (fODFs). Coronal maximum in-
tensity projections are shown. A seed ROI is placed in the body of the corpus
callosum. Strengths are thresholded at the 95th percentile in (a) and at the 90th

percentile in (b). Thresholds were determined so that no propagation within the
crossing corona radiata occured in each case.

Comparison with other tractography methods

MGT has retained the advantages of graph-based tractography over streamline-based

approaches (Behrens et al., 2003; Parker et al., 2003). Information from other imaging

modalities on the voxel level can be integrated via a simple modification of the arc

weights (Eq. (7.5)). Other information, such as prior anatomical knowledge, can be in-

corporated in a similar way. MGT is also relatively fast and avoids a systematic reduc-

tion of path strengths with distance from the seed, a common problem of probabilistic
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tractography (Fig. 7.6d). Furthermore, due to the distributed nature of graph-based

algorithms, fibre branching is inherently considered. The improved performance of

MGT will also be beneficial to graph-based tractography applications on studying the

human brain connectome (Iturria-Medina et al., 2008).

MGT effectively borrows the idea of multi-tensor (Behrens et al., 2007; Parker and

Alexander, 2003) and Q-ball (Seunarine et al., 2007) probabilistic tractography. A dif-

ferent orientation uncertainty component is associated with each crossing population

in these methods. Similarly, a different arc weight is assigned to each crossing pop-

ulation in MGT. However, path propagation is different. Streamline-based methods

follow either of two alternatives within a crossing region: a) a crossing population is

chosen and propagation is allowed only towards it (Parker and Alexander, 2003), b) all

crossings populations that do not violate an arbitrarily set curvature threshold crite-

rion are chosen and propagation is allowed towards all of them (Chao et al., 2008; De-

scoteaux et al., 2009). Given that acute angle crossings cannot always be differentiated

from branchings, the former approach may underestimate connectivity in branching

regions. This will be remedied by the latter approach, which, however for the same

reason, may overestimate connectivity in crossing regions. The multigraph-based trac-

tography algorithm lies in the middle of these two alternatives. All crossing/branching

populations will be considered, but each with a different weight, depending on the tra-

jectory so far. The weights reflect the prior belief that WM paths are smooth curves and

do not change direction rapidly. In the presence of a crossing, propagation strengths to

one population will dominate. In the presence of a branching, propagation strengths

to all populations equally commensurate with the path will be of the same magnitude.

MGT was compared with two other distributed tractography techniques, one ba-

sed on graph theory (Iturria-Medina et al., 2007) and another on front propagation

(Campbell et al., 2005). In general, graph-based tractography has been shown to be

more robust against noise compared to fast marching algorithms (Iturria-Medina et al.,

2007). It also avoids the excessive branching that FM exhibits from the fastest route of

front propagation, a limitation that has been discussed before (Jackowski et al., 2005)

and is also evident in the simulations presented here (Fig. 7.4b). MGT keeps the ad-

vantages of GT and improves on that when a crossing is encountered. A detailed quan-

titative comparison with probabilistic tractography hasn’t been performed, due to the
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algorithms’ different nature. Probabilistic tractography provides voxel visitation maps

and computes the probability of connectivity, by repeating an experiment and count-

ing the number of times an event has occurred. Distributed tractography techniques

provide both paths and indices of connectivity along a path, which, however, encode

a different type of information. The fuzzy nature of the acquired images is reflected in

these indices, extending more naturally the binary framework of deterministic stream-

line tractography rather than converging to the results of probabilistic.

Nevertheless, a qualitative comparison was attempted (Fig. 7.6) between MGT and

probabilistic tractography. To explore the abilities of graph-based tractography, thala-

mic parcellation was performed, using the path strengths as an index of connectivity

(Fig. 7.9). The revealed thalamic organization (Fig. 7.9b) agrees well with Oxford’s tha-

lamic atlas (Johansen-Berg et al., 2005), obtained with probabilistic tractography (Fig.

7.9c). The fact that the atlas is an average of multiple subjects contributes to the ob-

served differences. There are also differences due to the type of information each con-

nectivity index encodes. Instead of simply using the path strength as an index of con-

nectivity, other alternatives include the weakest link along a path (Campbell et al., 2005;

Iturria-Medina et al., 2007) or the degree of agreement of the reconstructed trajectory

with the underlying diffusion profiles (Jackowski et al., 2005; Parker et al., 2002). These

indices are less curvature dependent and distance-independent and might influence

the GM parcellation. Furthermore, some thalamic voxels exhibited high connection

strengths with more than one cortical region. A fuzzier colour-coding scheme (Dra-

ganski et al., 2008) might therefore be more appropriate than the crisp one employed

here. These different options remain to be explored.

Assumptions and future work

A mixture model of N prolate tensors has been utilized to obtain individual ODF com-

ponents, when multiple ODF peaks are detected. When one peak is found, the ODF is

used as it is. This choice accommodates other complex fibre configurations that may

be present in a voxel, such as fibre fanning and fibre bending. In these cases, the ODF

tends to have a single broad peak (Seunarine and Alexander, 2009).

Multi-peaked ODFs are indirectly decomposed to single-peaked components us-

ing a model-based approach. A multi-tensor model is fitted, with the orientations of the
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tensors being fixed to the ODF peaks. This approach reduces the number of unknown

parameters and the dimensionality of the non-linear model. An alternative has been

presented in (Sotiropoulos et al., 2009), where a common single-fibre ODF kernel was

estimated from the top anisotropic voxels in the brain and aligned with each ODF peak

in each crossing voxel. This removed the need for fitting a multi-tensor model, which,

however, allows the estimation of single-fibre ODFs that are more representative of the

local data.

Furthermore, assuming that the ODF local maxima are good estimates of the un-

derlying crossing orientations may not always be valid and may provide biased esti-

mates (Zhan and Yang, 2006). The ODF decomposition approach described in (Schultz

and Seidel, 2008) corrects for the direction bias and can be employed with MGT, instead

of the mixture model used here.

To alleviate the effects of discrete path propagation, the angular resolution of the

algorithm was enhanced by increasing the neighbourhood size. Smoother paths could

be reconstructed and more voxels were strongly connected to the seed in the case of

curved tracts (Figs. 7.4 and 7.7). However, an increase in the angular resolution comes

with an increased curvature dependence of the arc weights. Fig. 7.13 shows how an arc

weight between two adjacent voxels varies with the relative orientation difference of

the respective ODF peaks. For a 3x3x3 neighbourhood, graph weights can tolerate up

to 22o degrees of curvature between adjacent voxels, before they start decreasing from

a value of one. For a 5x5x5 neighbourhood, this curvature value is reduced to 12o. This

curvature dependence, present in both GT and MGT, is due to the imposed symmetry

in the graph weights. A weight wij will be one, only if the solid angle cones from the

two voxels contain the peaks of the respective ODFs. Increasing the neighbourhood

size, reduces the solid angle and therefore reduces the chance of overlapping between

the ODFs in i and j. Nevertheless, even in cases of highly curved tracts, such as the

cingulum (Fig. 7.8), MGT assigned to it the top strength values that differentiated this

bundle from the background. The curvature dependence can be removed, if no sym-

metry is imposed on the graph weights. A further refinement to the discrete path prop-

agation can be the geometric correction scheme proposed in (Bodammer et al., 2009).

This assigns different solid angles to different neighbours (i.e. face-to-face neighbours

subtend a larger ω than corner-to-corner ones) and takes into account the geometry of
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the acquisition grid.

Figure 7.13: Curvature dependence of symmetric arc weights. The di�erence be-
tween the ODFs orientation in two adjacent voxels is plotted versus the calculated
arc weight, for two di�erent neighbourhood systems. Black: 3x3x3 neighbourhood,
solid angle ω = 4π/26, Gray: 5x5x5 neighbourhood, solid angle ω = 4π/98.

Similar to all quantitative tractography methods, including probabilistic approa-

ches, there is an open question on how to identify the background connectivity and ex-

tract only the relevant paths. For visualisation purposes, a simple threshold was used

to interactively choose the top connected voxels to the seed. Previous studies have simi-

larly used user determined thresholds to identify anatomically plausible paths (Camp-

bell et al., 2005; Iturria-Medina et al., 2007; Parker et al., 2002; Staempfli et al., 2006).

More advanced methods will include the development of a null connectivity model

to test a hypothesis against, similar to the recent work by (Clayden and Clark, 2009;

Morris et al., 2008).

Summary

In summary, a distributed multigraph-based tractography algorithm for exploiting Q-

ball imaging to propagate through fibre crossings has been presented. Limitations of

previous distributed tracking methods that utilize Q-ball images were discussed and
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a new approach was proposed. The new algorithm was compared both quantitatively

and qualitatively with two other methods, using simulated data, as well in vivo data

acquired from a group of healthy subjects. MGT propagates through complex fibre con-

figurations, and assigns to paths strengths that are more representative of their anatom-

ical plausibility. Furthermore, the proposed method was shown to have a potential on

applications tackled so far only with streamline-based approaches, such as thalamic

parcellation.
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Appendix A: Multigraph-based tractography algorithm

The algorithm described here (MGT) uses an image multigraph G and a set of arc

weights w as inputs, to compute the strongest path from a seed voxel s to all N fi-

bre components of all image voxels i. The strengths Mn
i...s of these strongest paths are

also returned. For notational simplicity, Mn
i ≡ Mn

i...s and Pathn
i ≡ Pathn

i...s. To build

an image of path strengths, the largest strength Mi is also returned for each voxel i. A

priority queue, implemented as a heap (Kruse and Ryba, 2000), is used as an auxiliary

data structure. A function Valid() is used to identify in each propagation step, neigh-

bours to which a transition will cause a curvature change of less than 90o; propagation

only to these neighbours is considered. The algorithm reduces to graph-based tractog-

raphy (Iturria-Medina et al., 2007), if no crossings exist (i.e. N = 1 for all voxels). A

3x3x3 neighbourhood is assumed, denoted by F
neigh
i ; slight modifications described in

section 7.5 should be made for a larger neighbourhood system.

Algorithm 7.1 Multigraph-based Tractography

1: for all image voxels i do

2: for each ODF component n of i do

3: Mn
i =







0, if i 6= s;

1, if i = s;

4: Pathn
i = Empty;

5: Enqueue (i,n);

6: while Queue 6= Empty do

7: Dequeue element (i,n) with maximum M value;

8: V
neigh
i = Valid

(

i, n, F
neigh
i

)

;

9: for all neighbours j ∈ V
neigh
i do

10: for each ODF component k of j such that (j, k) ∈ Queue do

11: Mtrial = Mn
i · win jk ;

12: if Mtrial > Mk
j then

13: Mk
j = Mtrial ;

14: Pathk
j = {Pathn

i ∪ a(i, j)}
15: for all image voxels i do

16: Mi = max
n

(Mn
i );

155



CHAPTER 7: GRAPHS AND MULTIGRAPHS FOR WHITE MATTER TRACTOGRAPHY

Function 7.2 Valid
(

i, n, F
neigh
i

)

1: W=Empty;

2: if i=s then

3: W = F
neigh
i ;

4: else

5: rlast = last direction in Pathn
i ;

6: for all j ∈ F
neigh
i do

7: dot=rlast · rij;

8: if dot>0 then

9: W = {W∪ j};
10: return W;

Appendix B: Fast-marching tractography algorithm

The fast marching algorithm (Sethian, 1996) utilizes a speed function v to propagate a

front from a seed or a group of seeds s. The implementation presented here, following

the one presented in (Staempfli et al., 2006), computes a front arrival time T for all im-

age voxels. Front speed values v(i, rij) are calculated between a voxel i and each 3x3x3

neighbour j, using the diffusion ODF at i along the unit vector rij (Campbell et al.,

2005); rij indicating the direction between the centres of i and j. During propagation,

three sets of voxels are utilized, voxels already visited by the front, voxels lying just

outside the front (the narrow band) and the remaining voxels, as has been shown in

Fig. 4.5. Members of the narrow band are candidates for inclusion in the front, which

propagates in each step towards the maximum speed direction. A priority queue is

used as an auxiliary data structure to store the elements of the narrow band. An index

Front(i) indicates whether a voxel i belongs to the front. An array Previous(i) stores

the voxel through which i entered the front, while vlink(i) stores the speed value for

this transition.
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Algorithm 7.3 Fast Marching Tractography

1: T(i) = ∞ and Front(i) = 0 ∀ voxel i;

2: Previous(i) = unde f ined and vlink(i) = 0 ∀ voxel i;

3: for all seed voxels s do

4: T(s) = 0 and Front(s) = 1;

5: vlink(s) = ∞;

6: Enqueue s;

7: while Queue 6= Empty do

8: Dequeue i with minimum T value;

9: Front(i) = 1;

10: for all neighbours j of i with Front(j) = 0 do

11: Ttrial = T(i) + |j− i| /v(i, rij);

12: if Ttrial < T(j) then

13: T(j) = Ttrial ;

14: Previous(j) = i;

15: vlink(j) = v(i, rij);

16: if j/∈ Queue then

17: Enqueue j;

Paths C can then be found from any voxel to the seed by going backwards, using

the Previous array. The connectivity of a voxel will be the weakest link along its path

to the seed, i.e. the minimum of the vlink values. In case that two consecutive steps

in C cause a curvature change equal or greater than 90o, the connectivity of the voxels

linked through C to the seed is set to zero.

Appendix C: Multiple prolate tensor model

The multi-tensor model utilized here, assumes mixtures of cylindrically-symmetric ten-

sors only. These are tensors with their second and third eigenvalues equal (λ2 = λ3).

A cylindrically symmetric tensor with principal eigenvector e1 and eigenvalues λ1, λ2,

λ2 can be expressed as (Alexander, 2006):

D = (λ1 − λ2)e1eT
1 + λ2I , (7.8)

with I being the identity matrix. Let u =
√

λ1 − λ2e1. Then, the tensor can be described

157



CHAPTER 7: GRAPHS AND MULTIGRAPHS FOR WHITE MATTER TRACTOGRAPHY

by just 4 parameters:

D = uuT + λ2I . (7.9)

If the tensor orientation e1 is fixed and only its eigenvalues are of interest, the fol-

lowing parameterization guarantees the non-negativity of the estimated eigenvalues:

D = α2e1eT
1 + β2I . (7.10)

Once α and β are estimated, the tensor eigenvalues are α2 + β2, β2, β2.

a) Two-tensor model: A mixture model of two tensors DA and DB is given by the

following:

Sk = S0

[

f exp(−bgT
kDAgk) + (1− f )exp(−bgT

kDBgk)
]

, (7.11)

where the tensors are parameterized as shown before. To increase the robustness of the

fit, the difference α2 between the principal and secondary eigenvalues is assumed to be

the same for both tensors. Therefore, the tensors are:

DA = α2eA1eT
A1 + β2

AI and DB = α2eB1eT
B1 + β2

BI , (7.12)

with the orientations eA1 and eB1 being fixed to the respective Q-ball ODF peaks. This

two-tensor model is non-linear and is fitted to the measurements using the Levenberg-

Marquardt algorithm (Press et al., 1992). During each iteration of the algorithm, the

partial derivatives ∂Sk/∂ζ over all model parameters ζ need to be evaluated for the b

value and gk direction vector of all k diffusion-senzitizing gradients. To ensure that

the volume fraction f ∈ [0, 1], it is replaced by f = sin2θ. For the initialization of

Levenberg-Marquardt, the least squares estimates of the single tensor model are used

(Alexander and Barker, 2005). The volume fractions are set to 0.5. The secondary eigen-

values of both tensors are set equal to the smallest eigenvalue obtained from the DTI

model (λA2 = λB2 = λ3). Finally, the principal eigenvalues are set equal (λA1 = λB1),

such that the average diffusivity along DTI’s e1 is DTI’s λ1. This gives the following
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equation:

0.5 · ADCA1 + 0.5 · ADCB1 = λ1 =⇒

λA1 = λB1 =
2λ1 − λ3[1− (e1 · eA1)

2]− λ3[1− (e1 · eB1)
2]

(e1 · eA1)2 + (e1 · eB1)2
,

where the following expression has been used for ADCA1, the apparent diffusion coef-

ficient of tensor DA along the direction of e1:

ADCA1 = λA1(e1 · eA1)
2 + λA2[(e1 · eA2)

2 + (e1 · eA3)
2] =⇒

= λA1(e1 · eA1)
2 + λA2[1− (e1 · eA1)

2] .

Then, the initial values for the model parameters will be α2 = λA1 − λ3 and

β2
A = β2

B = λ3.

b) Three-tensor model: A mixture model of three tensors DA, DB and DC is given

by the following:

Sk = S0

[

f1exp(−bgT
kDAgk) + f2exp(−bgT

kDBgk) + (1− f1 − f2)exp(−bgT
kDCgk)

]

,

(7.13)

where the tensors are parameterized as shown in Eq. 7.12, i.e. with a common α2 pa-

rameter. To ensure that the volume fractions ∈ [0, 1], the following assignments are per-

formed f1 = sin2θ1 and f2 = (1− f1)sin2θ2 = (1− sin2θ1)sin2θ2. For the initialization of

Levenberg-Marquardt, the least squares estimates of the single tensor model are used

(Alexander and Barker, 2005). The volume fractions are set to 1/3. For the eigenvalues,

it is assumed that all tensors are anisotropic with eigenvalues ratio λj1/λj2 = k > 1,

with k being the same for all tensors Dj, j = A, B, C. All principal eigenvalues are ini-

tialized at the same value (λA1 = λB1 = λC1), such that the average diffusivity along

DTI’s e1 is λ1. This gives the equation:

(1/3) · ADCA1 + (1/3) · ADCB1 + (1/3) · ADCC1 = λ1 =⇒

λA1 = λB1 = λC1 =
3kλ1

(k− 1)(e1 · eA1)2 + (k− 1)(e1 · eB1)2 + (k− 1)(e1 · eC1)2 + 3
.
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The parameter k that controls the anisotropy of the initial tensor estimates is set to

k = 8, representative of the difference between the principal and secondary DTI eigen-

values in the highly anisotropic corpus callosum voxels (Pierpaoli et al., 1996).
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8
Conclusions

8.1 Summary and conclusions

This thesis is concerned with diffusion-weighted (DW) MRI of the brain and white mat-

ter tractography. DW-MRI introduces contrast to images utilizing the random motions

of water molecules within tissue. For tissues exhibiting structural coherence, such as

brain white matter, molecules are hindered in a systematic way and diffusion becomes

anisotropic; meaning that it is observed more towards a specific orientation. This is

assumed to indicate the orientation of the underlying neuronal fibres. Tractography

utilizes these orientation estimates to reconstruct the route of fibre bundles. Due to the

relatively large resolution of DW-MRI (usually 2 mm) compared to the diameter of a

single axon (mostly <10 um), tractography provides evidence for bundles of thousands

of axons.

Methodological improvements and contributions for performing tractography we-

re presented in the research chapters. The problem of resolving crossing fibre config-

urations has been presented in the background sections along with existing methods.

The question that was addressed in Chapter 5 was "How well can we reconstruct cross-
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ing fibre configurations from conventional diffusion tensor images?". A regularization

scheme was employed to impose continuity of the diffusion process between neigh-

bouring voxels and, thus, continuity of fibre orientations. Relaxation labelling was

adapted to iteratively choose amongst a set of fibre orientations, the ones that preserve

smooth changes across neighbours. Furthermore, a hybrid minimization scheme was

proposed to speed up the process. The spatial regularization improved the orientation

estimates obtained from a two-tensor model correcting for a) noise artefacts and b) arte-

facts caused by the non-linear fitting procedure. Improvements at a global scale were

evident in tractography results. Using images acquired at low b value and in less than 6

minutes, lateral paths of the corpus callosum were reconstructed using the regularized

orientations, while Q-ball imaging failed on the same dataset. Apart from orientations,

revised anisotropy and diffusivity information could be also obtained. This chapter

showed that since diffusion is continuous in space, we do not need to rely only on local

estimates to recover fibre orientations and reconstruct white matter structures.

Two global tractography methods were presented in the next chapters. The ques-

tion that was addressed in Chapter 6 was "Given that images are fuzzy, can we tackle

the tractography problem using fuzzy theory and also incorporate crossing fibre infor-

mation?". Fuzzy connectedness tractography (FCT) was presented as a method that

searches for the weakest link of the strongest path on the image grid, that connects any

image voxel to a seed. This link determines the connectedness of the voxel. Compared

to probabilistic indices of connectivity, fuzzy connectedness reflects orientational co-

herence along a path and does not drop systematically with the distance from the seed.

It is a relative measure that was shown to be able to differentiate between paths be-

longing to the same bundles from non-coherent paths. Even highly curved tracts, such

as the fornix and the cingulum that are challenging to reconstruct with streamlines,

could be followed. Compared to other global tracking algorithms, fuzzy connectedness

tractography (FCT) propagated through fibre crossings, by considering all the crossing

orientations, but in a weighted manner that reduced the chance of false positives. As

FCT can be combined with any DW-MRI reconstruction method that provides N ≥ 1

fibre orientation estimates, results were shown using DTI, Q-ball and multi-tensor ori-

entations. Finally, the relationship between FCT and graph-based tractography was

discussed in this chapter; FCT was shown to be effectively a graph searching proce-

dure.
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Graph-based tractography is a relatively new framework that has shown a lot of

potential. In Chapter 7, the question that was addressed was "What can we gain by

incorporating fibre crossing information and increasing the angular resolution of prop-

agation in graph-based tractography?". The development of multigraph-based trac-

tography (MGT) was presented. Instead of fibre orientations as in FCT, orientation

distribution functions were utilized in MGT, to partially map the uncertainty in the es-

timates. Elements of the previous chapters, including multi-tenor models and multiple

voxel instances in crossing regions, were employed. A brain image was represented as

a multigraph, meaning that multiple arcs existed between voxels that contained cross-

ing configurations. An algorithm to search the graph exhaustively for the strongest

path connecting each voxel to the seed was presented. MGT incorporated informa-

tion from different imaging modalities, as both anatomical T1-weighted and diffusion-

weighted images were used in the construction of the multigraph. A quantitative and

qualitative comparison to existing methods showed that MGT can propagate robustly

through fibre crossings. Its potential was illustrated by performing connectivity-based

thalamic parcellation, a challenging task that involves propagation within grey matter.

To the author’s best knowledge, this is the first time that tractography-based parcella-

tion of a nucleus is obtained through a non-streamline tracking method. Given these

results and the flexibility of the new framework in reflecting different types of informa-

tion into the connectivity indices, MGT was shown to be a promising method for brain

connectivity analysis.

8.2 Future perspectives

A common issue for all quantitative tractography methods is identifying statistically

significant connections to a seed. With both frameworks presented in this thesis, an

index of connectivity is computed for every image voxel. Probabilistic streamline trac-

tography exhibits a similar behaviour, even if not all voxels are necessarily assigned a

connectivity value. To identify which of these values have a physical meaning, a proper

null hypothesis needs to be developed in order to test for significant anatomical con-

nections. An effort towards this direction has been presented in (Morris et al., 2008) for

probabilistic tractography and similar studies are needed for other quantitative trac-
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tography methods.

A field that has recently drawn attention is integration of information from multi-

ple imaging modalities to study brain connectivity. Approaches such as fuzzy, graph-

based and multigraph-based tractography presented in this thesis allow such integra-

tion at the voxel level. Recent studies have attempted multi-modal information in-

corporation at the region level. In (Hagmann et al., 2008), functional connectivity, the

temporal correlation of resting-state fMRI time series (Friston et al., 1993), is corre-

lated with indices of structural connectivity obtained from streamline tractography. In

(van den Heuvel et al., 2009), the structural connections between nodes of functional

networks present during rest (Greicius et al., 2003) are identified. Frameworks that

consider simultaneously the different types of information are needed, since structural

and functional connectivity complement each other.

Towards this direction, whole-brain connectivity matrices as the ones presented in

(Iturria-Medina et al., 2008), allow the computation of indices representing both direct

and indirect structural connections (Sporns, 2002), in accordance with functional in-

dices that depict direct or indirect functional connections. The improved performance

of multigraph-based tractography is expected to improve the connectivity matrices of

(Iturria-Medina et al., 2008) and thus subsequently calculated measures. It is also im-

portant to define appropriately the structural connectivity between regions of interest,

in terms of the connectivity values of the comprising voxels. Different alternatives are

proposed in (Iturria-Medina et al., 2008) and (Kreher et al., 2008b), however it is not yet

clear which of them represents best the underlying anatomical connectivity. Further

exploration is needed to answer this question.

There are also open questions in the utilization of the fibre and diffusion ODFs

in performing tractography. Considering them as in the multigraph-based framework

or in the curve propagation framework of (Descoteaux et al., 2009), maps some of the

uncertainty of the fibre orientation estimates. Given though the deterministic compu-

tation of these functions, data uncertainty is not fully considered and reflected in the

results. Incorporating the ODF uncertainty in tractography frameworks could have a

dramatic effect on the interpretability of connectivity maps (Behrens and Jbabdi, 2009),

since a distribution of connectivity indices could be obtained for each voxel. MCMC

approaches to estimate this uncertainty have been suggested in (Fonteijn et al., 2007;
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Kaden et al., 2007), however their routine application is hindered by their computa-

tional requirements. More effective approaches can be based on the residual bootstrap

(Haroon et al., 2009) or on exact Bayesian inference (Sotiropoulos et al., 2010), an ap-

proach recently suggested by our group.

Apart from crossing fibres, there are other complex configurations that are more

difficult to resolve and are still a challenging problem. These include fibre fanning,

bending and kissing (Seunarine and Alexander, 2009). Modelling these configurations

at a sub-voxel scale seems to be a potential solution, as recently showed in (Nedjati-

Gilani and Alexander, 2009). Furthermore, instead of using only local, within-voxel

data, exploiting neighbourhood information can assist in the reconstruction of these

configurations. The idea of spatial continuity of orientations that was utilized in this

thesis was also employed in (Savadjiev et al., 2008) to disambiguate between fibre cross-

ings, fibre fannings and single fibre configurations.

More studies are also needed on tractography validation. Given that it is impos-

sible to validate the results within each living subject against a gold standard, prior

anatomical knowledge is usually invoked as evidence of successful reconstruction. The

simplest validation method is through computer simulations. Some groups have devel-

oped biologically-inspired phantoms for which the ground-truth is known (Campbell

et al., 2005; Poupon et al., 2008). Recent studies have performed in-vitro (Dyrby et al.,

2007) and in-vivo (Dauguet et al., 2007) tractography on animal brains and evaluate the

overlap between tractography results and paths identified by injected axonal tracers.

A qualitative comparison between tractography in living humans and white matter

tracts dissected from post-mortem brains has been presented in (Lawes et al., 2008).

Despite these attempts, quantitative studies that compare different tracking methods

are missing.

The development of ultra-high field MRI scanners will enhance the potential of

DW-MRI. The higher signal to noise ratio (SNR) and resolution that can be (theoret-

ically at least) achieved, are expected to improve data quality and possibly increase

the range of diffusion imaging applications. In (Mukherjee et al., 2008) preliminary re-

sults on 7T Q-ball imaging are presented. The higher SNR allowed the reduction of the

number of DW directions and thus scanning time, while keeping the same resolving

power in fibre crossings reconstruction. Such improvements may allow more routine
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utilization of Q-space/Q-ball protocols. Along with continuing methodological devel-

opments, they can increase the impact of diffusion-weighted MRI and tractography on

tackling neuroscience questions (Hagmann et al., 2008), but also on clinical applications

(Ciccarelli et al., 2008).
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