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a b s t r a c t 

Numerous studies indicate large heterogeneity in brain ageing, which can be attributed to modifiable 

lifestyle factors, including sleep. Inadequate sleep has been previously linked to gray (GM) and white 

(WM) matter changes. However, the reported findings are highly inconsistent. By contrast to previous 

research independently characterizing patterns of either GM or WM changes, we used here linked inde- 

pendent component analysis (FLICA) to examine covariation in GM, and WM in a group of older adults 

(n = 50). Next, we employed a novel technique to estimate the brain age delta (difference between 

chronological and brain age assessed using neuroimaging data) and study its associations with sleep qual- 

ity and sleep fragmentation, hypothesizing that inadequate sleep accelerates brain ageing. FLICA revealed 

a number of multimodal components, associated with age, sleep quality, and sleep fragmentation. Sub- 

sequently, we show significant associations between brain age delta and inadequate sleep, suggesting 2 

years deviation above the chronological age. Our findings indicate sensitivity of multimodal approaches 

and brain age delta in detecting link between inadequate sleep and accelerated brain ageing. 

© 2022 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The ageing brain undergoes widespread gray (GM) and white

matter (WM) degeneration associated with functional brain

changes and gradual cognitive decline. Numerous studies indicate

large heterogeneity in the age-related brain changes in older adults

( Cabeza et al., 2017 ; Eavani et al., 2018 ; Good et al., 2001 ; Raz

& Rodrigue, 2006 ; Westlye et al., 2010 ). Understanding this het-

erogeneity is of high importance as it could provide key insights

into why some older adults go through rapid cognitive deteriora-
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tion progressing to dementia, while others experience only mild

decline in cognitive functioning or no noticeable cognitive changes

( Hayden et al., 2011 ). However, disentangling the heterogeneity in

brain ageing has proved to be a challenge despite numerous re-

search effort s. Some of the ongoing work f ocuses on phenotyping

to capture a variation in brain ageing and predict trajectories of

normal versus pathologic ageing (e.g., Eavani et al., 2018 ). Other

studies explore compensatory and neuroadaptive mechanisms of-

ten linked to lifelong cumulative cognitive engagement (for review

see Cabeza et al., 2018 ; Fabiani, 2012 ; Stern et al., 2020 ). Finally,

a growing body of work links heterogeneity in brain ageing to

modifiable lifestyle factors such as sleep, diet, and physical activ-

ity ( Wassenaar et al., 2019 ). 

Sleep disruptions constitute a potentially modifiable risk fac-

tor for dementia and reduced longevity. As we get older overall

sleep quality deteriorates. Up to half of elderly population experi-

ences various sleep problems and sleep disruptions, including dif-

ficulties in maintaining or initiating sleep, and fragmentation of
n open access article under the CC BY license 
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sleep ( Miner & Kryger, 2017 ; Varma et al., 2019 ). Short sleep du-

ration and poor sleep quality in healthy older adults have been

previously associated with grey matter atrophy and microstructural

white matter changes, consequently leading to cognitive decline

( Sexton et al., 2014 ; Sexton et al., 2017 ; Wassenaar et al., 2019 ).

However, the reports linking sleep problems, brain changes, cogni-

tive outcomes and overall increased risk of dementia are inconsis-

tent ( Sexton et al., 2020 ; Zitser et al., 2020 ). For example, a recent

longitudinal ageing study, spanning over almost 3 decades failed to

demonstrate a significant link between sleep duration, and either

grey matter or white matter microstructure ( Zitser et al., 2020 ).

While some of the inconsistent findings (e.g., Fjell et al., 2021 ;

Lo et al., 2014 ; Ramos et al., 2014 ; Sexton et al., 2014 ; Sexton et al.,

2020 ; Sexton et al., 2017 ; Spira et al., 2016 ; Yaffe et al., 2016 ;

Zitser et al., 2020 ) could be explained by differences in terms of

how sleep problems have been defined and assessed or differences

in studied population characteristics, it is also plausible that these

could be attributed to methods employed to examine age-related

brain changes. 

Data analysis techniques rooted in structural magnetic

resonance imaging (MRI), such as voxel-based morphome-

try ( Ashburner & Friston, 20 0 0 ) and cortical surface analysis

( Dale et al., 1999 ; Fischl, 2012 ; Fischl & Dale, 20 0 0 ) from T1-

weighted scans, have been fundamental in identifying volumetric

gray matter and cortical thickness changes, respectively, in relation

to age-related cognitive decline ( Giorgio et al., 2010 ; Good et al.,

2001 ; Lemaitre et al., 2012 ). Additionally, diffusion MRI (dMRI)-

based measures sensitive to microstructural properties of white

matter have been successfully employed to characterize white

matter alterations and changes in structural connectivity in rela-

tion to cognitive ageing (e.g., Barrick et al., 2010 ; Burzynska et al.,

2010 ; Giorgio et al., 2010 ). Such approaches characterize patterns

of either gray (e.g., voxel-based morphometry analysis, Ashburner

& Friston, 20 0 0 ) or white matter (e.g. tract-based spatial statistics

analysis, Smith et al., 2006 ) changes independently, estimated

from a single MRI modality. A potential shortcoming is that

they fail to capture interlinked gray and white matter changes

associated with cognitive decline as well as to model covariation

in gray and white matter age-related deterioration. Furthermore,

information provided by methods based on different modalities

might be difficult to integrate into a single model of brain ageing

and occasionally the resulting findings seem contradictory (e.g.,

McGinnis et al., 2011 ; Raz & Rodrigue, 2006 ). To overcome these

drawbacks and limitations methods aimed at fusing information

from multiple modalities have been developed (e.g., Groves et al.,

2011 ; Liu et al., 2009 ; Xu et al., 2009 ). One of such methods,

based on linked independent component analysis ( Groves et al.,

2011 ), enables decomposition of data from multiple modalities

into spatial components to model variation in cross-modal imag-

ing features across groups of participants. Linked independent

component analysis has been previously applied to access patterns

of structural brain changes during healthy and pathologic ageing

( Douaud et al., 2014 ; Groves et al., 2011 ; Groves et al., 2012 ). To

our best knowledge all the previous studies, examining the effects

of sleep problems on brain ageing, separately examined patterns

of either gray or white matter changes estimated from a single

MRI modality. 

Another approach to capturing the inter-individual differences

in the rate of brain ageing is based on estimation of so called

“brain age gap” or “brain age delta” i.e., difference between

“chronological age” calculated from the date of birth and “brain

age” computed based on neuroimaging data ( Cole & Franke, 2017 ;

Cole et al., 2017 ; Franke & Gaser, 2019 ; Liem et al., 2017 ;

Smith et al., 2019 ). As this method enables to quantify the devi-

ation from normative ageing, it has been used as a biomarker of
brain ageing; to assess accelerated brain ageing associated with

Alzheimer’s disease as well as a predictor of progression from

mild cognitive impairment to dementia ( Boyle et al., 2021 ; Cole

& Franke, 2017 ; Franke & Gaser, 2019 ; Gaser et al., 2013 ). Simi-

larly, this method has a potential to provide understanding of long-

term predictors of brain health, including socio-demographic and

lifestyle factors. One recent study examined the effect of educa-

tion and physical activity on the gap between “chronological age”

and “brain age,” elegantly demonstrating that higher levels of ed-

ucation and physical activity have a positive impact on the ageing

brain, supporting more “youthful” state ( Steffener et al., 2016 ). 

In this study, we investigated the associations of age-related

brain changes with 2 measures indicative of sleep problems, sleep

quality index (Pittsburgh Sleep Quality Index, Buysse et al., 1989 )

and actigraphy-derived measure of sleep fragmentation, hypothe-

sizing that inadequate sleep (poor sleep quality and sleep frag-

mentation) accelerates brain ageing. First, using linked indepen-

dent component analysis, we explored interconnected GM and WM

microstructural changes due to brain aging and sleep problems

(inadequate sleep) in a group of 50 neurotypical elderly partici-

pants using measures extracted from structural and diffusion MRI.

Subsequently, to assess the effects of inadequate sleep on accel-

erated brain ageing, we employed a recently-introduced technique

( Smith et al., 2019 ) to estimate brain age delta, the deviation from

chronological brain age, in an unbiased manner (i.e., by apply-

ing linear and quadratic correction to remove age-related biases).

While the most widely used approaches to study “brain age gap”

(for review see Cole & Franke, 2017 ; Franke & Gaser, 2019 ) are

based on predictors derived from a single MRI modality, we em-

ployed a multimodal approach, with a set of structural, and mi-

crostructural imaging-derived features ( Smith et al., 2019 ). Alto-

gether, we aimed to explore sensitivity of multimodal approaches

and brain age delta in detecting the associations between the in-

adequate sleep (assessed based on overall sleep quality and sleep

fragmentation) and brain ageing, which might not be evident using

conventional unimodal analyses. 

2. Methods and materials 

2.1. Participants 

Fifty older adults participated in the study (22 males; age range

65-84; mean ± SD age 73.5 ± 4.7). All participants were recruited

either from the Neuropsychological panel of elderly volunteers, or

the Birmingham 10 0 0 Elders group, both established at the Univer-

sity of Birmingham. The 2 panels of elderly volunteers consist of

adults aged 65 or over who have no pre-existing cognitive impair-

ment. All participants had normal or corrected-to-normal vision,

had no history of psychiatric or neurologic disease and were right-

handed (self-report). All participants scored within normal range

on all the subscales of the short version of the Depression, Anxi-

ety and Stress Scale (DASS-21; Lovibond & Lovibond, 1995 ). Partic-

ipants with contraindications to MRI and clinical diagnosis of sleep

disorders were excluded. 

The study was approved by the University of Birmingham Eth-

ical Review Committee and all participants provided written in-

formed consent and received monetary compensation for partic-

ipation in agreement with approved ethics protocol. The demo-

graphic characteristics of participants are presented in Table 1 . 

2.2. Sleep assessment 

Wrist actigraphy, sleep diaries and the Pittsburgh Sleep Qual-

ity Index (PSQI) questionnaire were used as objective and self-

reported and/or subjective measures of habitual sleep. To objec-
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Table 1 

Participant’s characteristics 

Variable Number (N = 50) Mean (SD) Range 

Age (y) — 73.5 (4.7) 65-84 

65-69 11 — —

70-74 17 — —

75-79 16 — —

80-85 6 — —

Gender (Male and/or Female) 22/28 — —

PSQI (global score) a — 5.6 (3.3) 0-15 

Subjective sleep quality b — 0.9 (0.6) 0-2 

Sleep latency b — 0.9 (0.9) 0-3 

Sleep duration b — 0.8 (0.7) 0-2 

Sleep efficiency b — 0.9 (0.9) 0-3 

Sleep disruptions b — 1.3 (0.5) 0-2 

Sleep medication b — 0.3 (0.6) 0-3 

Daytime dysfunctions b — 0.8 (0.6) 0-3 

WASO (min) — 39.6 (19.2) 15-107 

PSQI, Pittsburgh Sleep Quality Index; WASO, wake after sleep onset. 
a Maximum score 21. 
b Maximum score 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tively evaluate sleep patterns, participants were asked to wear

wrist actigraphs (Actiwatch2, Philips Respironics Ltd) for a period

of 2 weeks prior to the scheduled MRI scanning session. Actigraphs

were set to 1-minute epochs (medium sensitivity setting), and col-

lected data analyzed using Respironics Actiware 6 (Philips, Nether-

lands) software, which translates wrist movement data into sleep

scores (sleep and/or wake cycles). The software output was vali-

dated using sleep diaries completed alongside actigraphy. For the

purpose of the current study, we used Actiware outputs to calcu-

late wake after sleep onset (WASO), a parameter measuring wake-

fulness time (in minutes) occurring after sleep onset, which in-

dexes sleep fragmentation. In addition, participants were asked to

self-evaluate their sleep quality by completing a widely used PSQI

questionnaire ( Buysse et al., 1989 ). PSQI is a validated scale con-

sisting of 19 self-rated questions assessing sleep quality and sleep

problems over a period of 1 month. Each question is rated on a

4-point Likert scale from 0 (not during the past month) to 3 (3 or

more times a week). The scores are first combined into 7 compo-

nents (subjective sleep quality, sleep latency, sleep duration, habit-

ual sleep efficiency, sleep disturbances, use of sleeping medication

and daytime dysfunction), which are added to produce a global

score of sleep quality, with a range of 0-21 points, with a higher

score indexing worse sleep quality ( Buysse et al., 1989 ; Carpenter

& Andrykowski, 1998 ). PSQI has been shown to have a good relia-

bility and validity in assessing sleep quality in the elderly popula-

tion ( Buysse et al., 1991 ; Gentili et al., 1995 ). 

Throughout the manuscript we use term inadequate sleep,

which is defined based on poor sleep quality indexed by the global

PSQI score, and actigraphy-derived wakefulness time (WASO) in-

dexing sleep fragmentation (not assessed by any of the PSQI ques-

tions). In order to ensure normal distribution, the WASO and PSQI

global scores were log and square root transformed, respectively,

prior to using them in the subsequent statistical analyses as mea-

sures of sleep fragmentation, and sleep quality. 

2.3. MRI data acquisition 

Structural T1-weighted and diffusion-weighted scans were ac-

quired at the Birmingham University Imaging Centre (BUIC) using

a Philips 3T Achieva scanner a 32-channel head coil. A T1-weighted

MPRAGE with spatial resolution 1 × 1 × 1mm 

3 (176 sagittal slices,

TR = 7.5 ms, TE = 3.5 ms, flip angle = 8 °) was obtained for

each participant, along with a multi-shell dMRI (single-shot EPI,

2 × 2 × 2mm 

3 , TR = 90 0 0 ms, TE = 81.5 ms, 5 x b = 0 s/mm 

2 ,
50 x b = 10 0 0s/mm 

2 , 50 x b = 20 0 0s/mm 

2 , plus 5 x b = 0 s/mm 

2

phase encoding-reversed to correct for susceptibility-induced arti-

facts; Andersson et al., 2003 ). 

2.4. T1-weighted data pre-processing and voxel-based morphometry 

(Unimodal analysis) 

The structural T1-weighted images were preprocessed using the

UK Biobank T1-weighted pipeline ( Alfaro-Almagro et al., 2018 ). The

pipeline corrects for bias fields, performs skull-stripping and aligns

data to the MNI152 standard template, before segmenting the T1

images into different tissue classes (e.g. GM/WM/CSF) as well as

into to cortical and subcortical structures. 

To examine whole brain age- and inadequate sleep (poor sleep

quality and sleep fragmentation)-related differences in GM struc-

ture, the brain-extracted images were processed following the FSL

voxel-based morphometry (VBM) pipeline ( Douaud et al., 2007 ;

Good et al., 2001 ). The resulting GM images were first non–linearly

registered to the MNI152 standard space and they were concate-

nated and averaged to create a study-specific GM template. All

of the 50 native images were then non–linearly registered to this

study-specific template and they were modulated by the determi-

nant of the Jacobian of the non–linear warp field to correct for lo-

cal enlargement or contraction due to the transformation. The 50

modulated registered GM images were smoothed with an isotropic

Gaussian kernel with a sigma of 2mm ( ∼5mm FWHM). We ex-

amined widespread GM volumetric changes in the brain by build-

ing a general linear model (GLM) using the demeaned age as a

regressor. We also studied the effects of sleep problems on the

GM changes by building 2 GLMs using the demeaned PSQI and

WASO while regressing out age, respectively. We used FSLs ran-

domize to perform non–parametric inference (Winkler et al., 2014).

Threshold-free cluster enhancement (TFCE) was applied to avoid

the selection of arbitrary initial cluster-forming threshold ( Smith

& Nichols, 2009 ) and 10 0 0 permutations were performed for each

contrast defined in the GLMs. The statistical maps were corrected

for multiple comparisons using family-wise error rate (FWE). 

2.5. Extraction of T1 features 

We extracted 110 structural (T1) imaging derived phenotypes

(T1 IDPs) using the UK Biobank T1 pipeline ( Alfaro-Almagro et al.,

2018 ). The T1 IDPs represented volumes of cortical and subcorti-

cal structures in each hemisphere in the standard MNI152 space

which were based on the Harvard-Oxford structural atlases ( https:

//fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases ). The cortical IDPs were ob-

tained using FAST ( Zhang et al., 2001 ) to derive the GM volumes

of the cortical regions of interest (ROIs). The subcortical IDPs were

obtained using FMRIBs Integrated Registration and Segmentation

Tool (FIRST; Patenaude et al., 2011 ) to produce the GM volumes of

the subcortical ROIs including the limbic, basal ganglia and thala-

mic sub-regions, and extending to the brainstem. These T1-derived

features, along with the dMRI-derived features (see Section 2.7 ),

were used for brain age delta estimation ( Section 2.9 ). The com-

plete list of the 110 T1 IDPs that were used in the brain age delta

models is presented in Supplementary Table 1. 

2.6. Diffusion data pre-processing and tract-based spatial statistics 

(unimodal analysis) 

The dMRI data were preprocessed using the UK biobank

pipeline ( Alfaro-Almagro et al., 2018 ). The procedure corrects for

susceptibility induced distortion, eddy-current distortion and mo-

tion using the EDDY toolbox ( Andersson & Sotiropoulos, 2016 ) and

obtains transformations of the diffusion to structural and standard

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
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space. A diffusion tensor model ( Basser et al., 1994 ) was fitted to

low b-value (b = 0 and 10 0 0s/mm 

2 ) shells of each voxel of the

corrected diffusion data to obtain microstructural maps including

fractional anisotropy (FA) and mean diffusivity (MD). 

To examine whole brain age- and inadequate sleep-related

differences in WM microstructure , Tract-Based Spatial Statistics

(TBSS) were carried out to skeletonize and transform the FA vol-

umes into a common space ( Smith et al., 2006 ). The FA native

images were non–linearly registered to the FMRIB58 FA standard

space using FNIRT due to its good native-to-standard warping

across different age groups ( Andersson et al., 2019 ; Westlye et al.,

2010 ). The mean FA volume from the 50 subjects was derived

and thinned to create a study-specific mean FA skeleton which

represents the centers of all common tracts. The mean FA skele-

ton was then thresholded and binarized at FA > 0.2 to minimize

partial volume effects with the boundaries of GM and CSF tis-

sues. The subject-wise FA volumes were warped onto this mean

FA skeleton to produce skeletonized FA data and the same warp-

ing procedure was applied to the MD maps to yield skeletonized

MD data from voxels with FA > 0.2. The resulting skeletonized FA

and MD maps were then fed into voxelwise cross-subject statis-

tics. We constructed GLMs to test for widespread effects of ageing

on FA and MD while regressing out the effects of motion, as esti-

mated by EDDY. We also examined the effects of inadequate sleep

on FA and MD by building GLMs using the demeaned PSQI and

WASO while regressing out motion and age. Threshold-free clus-

ter enhancement (TFCE) was applied to avoid the selection of arbi-

trary initial cluster-forming threshold ( Smith & Nichols, 2009 ) and

10 0 0 permutations were performed for each contrast defined in

the GLMs. The statistical maps were FWE-corrected for multiple

comparisons. 

2.7. Extraction of dMRI features 

We performed automated probabilistic tractography using

predefined protocols for identifying major WM tracts in the

left and right hemispheres as described in FSLs XTRACT tool

( Warrington et al., 2020 ; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

XTRACT ). Prior to XTRACT, we fitted the crossing fiber model

(FSLs BEDPOSTX; Behrens et al., 2007 ) to each subject’s data to

estimate up to 3 fiber orientations per voxel. XTRACT was then

used to reconstruct a set of tracts including projection, association,

commissural, and limbic fiber bundles for each subject. The tract

probability density maps, normalized by the total number of valid

streamlines, were thresholded at 0.1% and binarized to produce a

tract mask for each tract in standard space. We then applied the

tract mask of each subject with the TBSS derived FA skeleton to

produce subject-wise skeletonized tract masks, depicting the core

of each WM bundle. For each subject, the mean FA and MD within

each skeletonized tract were obtained to produce 66 (33 FA and

33 MD) subject-wise microstructural IDPs. The predefined list of

tracts that were reconstructed using XTRACT was: anterior com-

missure (AC), bilateral arcuate fasciculus (AF), bilateral acoustic

radiation (AR), bilateral anterior thalamic radiation (ATR), bilateral

cingulum (Cing), bilateral frontal aslant (FA), forceps major (FMA),

forceps minor (FMI), fornix (FX), bilateral inferior fronto-occipital

fasciculus (IFOF), bilateral inferior longitudinal fasciculus (ILF),

middle cerebellar peduncle (MCP), bilateral middle longitudinal

fasciculus (MdLF), bilateral optic radiation (OR), bilateral superior

longitudinal fasciculus 1 (SLF1), bilateral superior longitudinal

fasciculus 2 (SLF2), bilateral superior longitudinal fasciculus 3

(SLF3), bilateral superior thalamic radiation (STR), and bilateral

uncinate fasciculus (UF). 
2.8. Linked independent component analysis (multimodal analysis) 

To jointly explore whole brain age- and inadequate sleep-

related differences in GM structure and WM microstructure, we

used the VBM and TBSS maps, extracted from T1 and diffusion

MRI data respectively, as inputs to linked Independent Compo-

nent Analysis (FLICA). FLICA is a data-driven approach which au-

tomatically decomposes multimodal data into independent com-

ponents (ICs; Groves et al., 2011 ). Each IC characterizes a mode

of inter-subject multimodal (e.g. brain GM structure and WM mi-

crostructure in our case) variability such that each subject load-

ing, which is shared across the modalities, corresponds to statis-

tically independent, and non–Gaussian multi-modal spatial maps

( Groves et al., 2012 ). Importantly, an ICs subject loading may be

dominated by a single modality as opposed to equal contribution

of the modalities of interest. Given the sample size restriction, we

ran a FLICA decomposition with 10 ICs on 3 inputs, derived from

VBM (modulated GM density maps for each subject using a study-

specific template in MNI152 space) and TBSS (skeletonized FA map

and skeletonized MD map for each subject in MNI152 space) data

to identify post-hoc ICs which may linearly and/or quadratically as-

sociate with age, PSQI, and WASO. We evaluated statistical signif-

icance as well as plausible relationships between each ICs loading

and non–imaging measures using effect magnitude (R 

2 ) in addi-

tion to corrected p values ( Douaud et al., 2014 ). The results were

Bonferroni corrected for multiple comparisons across all 10 ICs. 

2.9. Computation of brain age delta 

Using multimodal features extracted from GM and WM, we es-

timated brain age delta ( δ) by employing multiple regression mod-

els as recently described in Smith et al (2019) . This method allows

for a linear and quadratic correction of δ, thus ensuring complete

independence between δ and chronological age. For a vector Y

(N x 1) representing chronological age for N participants, we cre-

ated an imaging matrix X (N x M) which denotes the summary

measures of the structural and microstructural features in the

studied group of elderly participants (N = 50). We computed δ by

using: (1) unimodal (i.e., 110 T1 or 66 dMRI) IDPs and (2) multi-

modal (i.e., 176 T1 + dMRI) IDPs, respectively ( Fig. 1 ). The head

size scaling factor was derived as an additional structural IDP in

accordance with the UK Biobank T1 pipeline ( Alfaro-Almagro et al.,

2018 ) and introduced as a confound ( Miller et al., 2016 ). Next, the

imaging feature matrix X was dimensionality reduced by apply-

ing singular value decomposition (SVD). We then performed 5-fold

cross validation (repeated 200 times and averaged results) to pre-

vent the regression models from overfitting the imaging data and

estimated δ, in a manner that makes it orthogonal to age and bias-

free ( Smith et al., 2019 ). Finally, to account for potential accelerated

effects of ageing on imaging measures (advanced ageing), we es-

timated the quadratic correction of delta by adding a non–linear

(quadratic) term in the multiple regression models. As a result,

δb was used to denote the biased (uncorrected) brain age delta

(typically used in previous studies), δ was used to represent the

linearly-corrected estimate of brain age delta, and finally, δq was

used to represent the quadratically-corrected estimate of brain age

delta. All models are shown in Fig. 1 . 

The R statistical package ( http://r-pkgs.had.co.nz/intro.html )

was used for statistical analyses of the brain age delta models with

sleep patterns (i.e., PSQI, WASO) (e.g. obtaining R 

2 ). Similarly, we

assessed the correlation strength of chronological age (Y) with the

uncorrected brain age (Y B ), the predicted linear (Y L ) and quadratic

(Y Q ) brain age estimates. To correct for multiple comparisons, a

False Discovery Rate (FDR)-corrected threshold of p < 0.05 was

applied. 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/XTRACT
http://r-pkgs.had.co.nz/intro.html
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Fig. 1. Overview of the brain age prediction model. A recently published approach described by Smith et al. (2019) was used to estimate brain age delta in an unbiased 

manner. (A) The structural and diffusion MRI data were preprocessed using the UK Biobank pipeline. (B) The T1 imaging derived phenotypes (T1IDPs) were extracted from 

the parcellations of cortical and subcortical GM volumes based on the Harvard-Oxford structural atlases. (C) The diffusion imaging derived phenotypes (dMRI IDPs) were 

extracted using predefined protocols for identifying major WM tracts as described by the FSL’s XTRACT tool. (D) The structural and microstructural IDPs were represented 

using an imaging matrix X (NxM) such that N = 50 participants and M = 176 (demeaned) imaging features. The head scaling factor was used as an additional structural IDP 

and introduced as a confound variable in the brain age prediction model. Next, a matrix Y was created to represent the (demeaned) chronological age for N = 50 participants. 

A matrix Y 2 was also computed to account for quadratic ageing processes which was subsequently demeaned and orthogonalized with respect to Y. The initial brain age 

prediction model is Y B = X β1 + δb such that β1 = X + Y and the uncorrected (biased) delta which is typically used in brain ageing studies is δb = Y B – Y. The corrected 

(unbiased) brain age prediction model is then computed as follows: δb = Y 2 β2 + δq such that β2 = Y 2 
+ δb . The linearly-corrected estimate of delta is δ = δb – Y β2 and 

the quadratically-corrected estimate of delta is δq = δb – Y 2 β2 . (E) The relationships between chronological age (Y) and brain age (uncorrected [Y B ]; linear [Y L ]; quadradic 

[Y Q ]) were assessed using Pearson’s correlation coefficient. The relationships between brain age delta (uncorrected [ δb ], linear [ δ], quadratic [ δq ]) and sleep measures (PSQI, 

WASO) were also evaluated using Pearson’s correlation coefficient. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Results 

3.1. Unimodal VBM: GM volumetric alterations in the ageing brain 

First, unimodal VBM and TBSS analyses were run to confirm

that our data demonstrate anticipated trends in GM structure and

WM microstructure with increasing age, as reported in previous

studies. VBM analyses showed significant widespread GM volume

reductions in our ageing cohort by recruiting the default mode net-

work, primary motor cortex, primary somatosensory cortex, audi-

tory cortex in addition to several language, and visual related ar-

eas ( p < 0.05 corrected; Fig. 2 ). Significant morphologic reductions

were also associated with increasing age in several prefrontal, lim-

bic, and cerebellar structures ( p < 0.05 corrected; Fig. 2 ). In agree-

ment with the literature, similar GM alterations were observed in

the basal ganglia which extended to the thalamus ( p < 0.05 cor-

rected; Fig. 2 ). 

3.2. Unimodal VBM: Sleep-related differences in GM volumes in the 

ageing brain 

When we examined the link between sleep quality as indexed

by PSQI and whole-brain morphometry, there was no evidence
of significant associations with the GM volumes, after correct-

ing for multiple comparisons. Similarly, no associations could be

found when we tested the effects of sleep fragmentation as mea-

sured by WASO on the GM volumes. Taken together, the unimodal

VBM analyses did not reveal sleep problems-related alterations in

whole-brain morphometry in the ageing brain. 

3.3. Unimodal TBSS: Age-related microstructural brain changes in 

WM 

We then explored whether our cohort data support previous

findings for widespread microstructural changes due to ageing.

TBSS analyses demonstrated widespread age-related changes in

the WM microstructure. Increasing age was significantly associated

with reduced FA and increased MD ( p < 0.05 corrected) within the

association, projection, limbic, and commissural WM fiber bundles

in the studied group of neurotypical older adults as illustrated in

Fig. 3 . 

3.4. Unimodal TBSS: Sleep-related differences in WM microstructure 

in the ageing brain 

When we performed the unimodal TBSS analyses to examine

sleep quality-related differences in FA or MD, there was no associa-
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Fig. 2. VBM: Whole-brain morphologic alterations in the ageing brain. Reduced GM volumes are significantly associated with increasing age. The colored voxels show 

widespread GM changes in the following regions: Default mode network: posterior cingulate cortex (PCC), precuneus (Pre), parahippocampal gyrus (PHG); Primary motor 

cortex: precentral gyrus (PreG); Primary somatosensory cortex: postcentral gyrus (PosG); Auditory cortex: Heschl’s gyri (HG), superior temporal gyrus (STG), planum polare 

(PP); Visual areas: lingual gyrus (LG), fusiform gyrus (FG), inferior temporal gyrus (ITG); Language areas: angular gyrus (AG), inferior frontal gyrus (IFG), insular cortex (INC), 

middle temporal gyrus (MTG); Prefrontal regions: superior frontal gyrus (SFG), middle frontal gyrus (MFG), frontal polare (FP); Limbic regions: hippocampus (HIP), amygdala 

(AMYG), orbitofrontal cortex (OFC); Basal ganglia: dorsal striatum (caudate (CAU), putamen (PUT), ventral striatum (nucleus accumbens [NAcc]), pallidum (Pa). The spatial 

map is FWE-corrected for multiple comparisons set at p < 0.05. 

Fig. 3. TBSS: Whole-brain skeletonized microstructural differences in older adults. (Top) Reduced FA is significantly associated with increasing age. (Bottom) Increased MD 

is significantly associated with increasing age in older adults. Changes were significant in a number of WM fiber bundles, including: Association fiber bundles: Inferior 

Longitudinal Fasciculus (ILF), Inferior Fronto-Occipital Fasciculus (IFOF), Superior Longitudinal Fasciculus (SLF), Uncinate Fasciculus (UF). Projection fiber bundles: Acoustic 

Radiation (AR), Anterior Thalamic Radiation (ATR), Posterior Thalamic Radiation (PTR), Corticospinal Tract (CST), Optic Radiation (OR). Limbic fiber bundles: Cingulum Gyrus 

part of Cingulum (Cing), Hippocampal part of Cingulum (CBH), Fornix (FX). Commissural fiber bundles: Forceps Major (FMA), Forceps Minor (FMI). The spatial maps are 

FWE-corrected for multiple comparisons set at p < 0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tion between WM microstructure changes in the ageing brain with

PSQI, after applying multiple comparison corrections. Similarly, no

association was found when we investigated the effects of sleep

fragmentation on FA, and MD. Overall, the unimodal TBSS analyses

did not reveal sleep problems-related changes in WM microstruc-

ture in older adults. 

3.5. Multimodal FLICA: Covariation in GM and WM changes 

associated with age 

Similarly to the unimodal TBSS and VBM analyses, multimodal

FLICA analysis revealed associations between changes in GM struc-

ture and WM microstructure, and age. Two components (i.e., IC 1

and IC 2 ) were significantly associated with increasing age. IC 1 ex-

hibited a U-shape profile with increasing age which was related

to regional GM reduction and WM changes, i.e., FA decrease and

MD increase ( Fig. 4 A). The IC 1 subject loadings displayed a non-

linear pattern which decreased from 65 to 73 years and then in-
creased from 73 to 84 years. While age explained 32% of the vari-

ance within IC 1 (R 

2 = 0.32, p < 0.001 corrected), the U-shape re-

lationship between the IC 1 subject loading and age was dominated

by MD (49%) and FA (34%) followed by GM volume (15%). The sec-

ond age-related component, IC 2 , showed a linear decrease of global

GM and WM microstructure with increasing age ( Fig. 4 B). Age ex-

plained 40% of the variance within IC 2 (R 

2 = 0.40, p < 0.001 cor-

rected). The linear relationship between the IC 2 loading and age

was mainly driven by the GM volume (42%) followed by FA (35%)

and MD (22%). 

Although the IC 1 subject loadings supported that GM volumet-

ric features contributed less to age-related changes in this compo-

nent compared to WM microstructural features, both cortical (AG,

SFG, STG, MFG, FP, lateral occipital cortex, parietal operculum cor-

tex), and subcortical (caudate, thalamus) regions were involved in

localized GM alterations ( Fig. 5 ). FA and MD maps revealed high

degree of overlap in small clusters that correspond to the associa-

tion (ILF, SLF), projection (ATR) and commissural (FMA, FMI) fiber
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Fig. 4. FLICA: Strongest independent components (ICs) that capture different modes of covariations in VBM and WM microstructure in addition to their relationships with 

age (A-B), PSQI (C-D) and WASO (E). Note that the x-axis shows the demeaned demographic (i.e., age) and behavioral (i.e., PSQI, WASO) values. The effect magnitude is 

represented by R 2 . The significant relationships between the IC subject loadings and demographic and behavioral measures are Bonferroni-corrected for multiple comparisons 

set at p < 0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bundles. Of note, the FA map showed ageing effects in other asso-

ciation (IFO and UF) fiber bundles whereas the MD map showed

some unique changes in the limbic (CBH, FX) fiber bundles. On the

other hand, the spatial map of IC 2 showed widespread GM volu-

metric alterations with increasing age which were evident in the

primary motor and somatosensory cortices, auditory cortex, limbic

system, in addition to several prefrontal, language and visual re-

lated areas ( Fig. 5 ). Similarly, FA and MD shared considerable over-

lap in the tracts that form part of the limbic (CBH) and association

(ILF, IFO, SLF) fibers. However, FA showed distinct age-related al-

terations in other limbic (FX), projection (FMA), and commissural

(ATR, PTR) fiber bundles. 

3.6. Multimodal FLICA: Covariation in GM and WM changes 

associated with sleep problems 

Contrary to the unimodal TBSS and VBM analyses, multimodal

FLICA analysis revealed associations between changes in GM struc-
ture and WM microstructure and sleep quality measures. FLICA re-

vealed 2 multimodal components (i.e., IC 3, and IC 4 ) which captured

interlinked GM and WM changes that were associated with the

global sleep quality score, i.e., PSQI. IC 3 showed a dominant mode

of linear decrease in GM volumes and WM microstructure with

poorer sleep quality ( Fig. 4 C). PSQI explained 13% of the variance

within IC 3 (R 

2 = 0.13, p = 0.012 corrected). The linear relationship

between the IC 3 subject loadings and PSQI was mainly driven by

GM volume (40%) followed by FA (31%) and MD (26%). The second

PSQI-related component, IC 4 , shared 2 modes of linear and non-

linear covariation in regional GM and WM microstructure which

were related to decreasing sleep quality ( Fig. 4 D). The IC 4 subject

loadings showed a U-shape profile such that weaker loadings were

associated with higher sleep quality (PSQI ≤ 5) whereas stronger

loadings were related to a deterioration in sleep quality (PSQI >

5). While PSQI explained 10% of the linear variation within IC 4 

(R 

2 = 0.10, p = 0.024 corrected), it explained 24% of the U-shape
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Fig. 5. FLICA: Spatial maps of the independent components (ICs) that reveal GM volumetric and WM microstructural changes measured by FA and MD in Age (Top Panel), 

PSQI (Middle Panel) and WASO (Bottom Panel). The spatial maps are Bonferroni-corrected for multiple comparisons set at p < 0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

variation within the same component (R 

2 = 0.24, p = 0.0059 cor-

rected). Specifically, the linear and U-shape relationships between

the IC 4 subject loadings and PSQI were greatly dominated by mor-

phologic reductions (72%) followed by FA (15%) and MD (12%) al-

terations. 

The spatial distribution of IC 3 showed GM networks that have

been previously associated with several cognitive domains such

as language, sensorimotor, visual, emotion, attention, and default
mode functions ( Fig. 5 ). FA and MD maps demonstrated WM

alterations with poor sleep quality in tracts that overlapped in the

association (ILF, IFO) and projection (ATR) bundles. We also ob-

served that FA captured distinct sleep-related effects in the FMA,

AR, SLF and UF fibre bundles whereas MD showed some changes

that were specific to the FX. Our data-driven approach also showed

that the GM spatial map of IC 4 overlapped with that of IC 3 to a

certain extent ( Fig. 5 ). Further, FA and MD revealed sleep-related
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Table 2 

Brain age delta 

IDP | δb | | ̄δ| | δq | r( Y , Y B ) p-value r( Y , Y L ) p-value r( Y , Y Q ) p-value 

T1 3.2 2.0 2.1 0.58 < 0.001 0.84 < 0.001 0.82 < 0.001 

dMRI 4.5 1.3 1.6 0.41 0.0028 0.95 < 0.001 0.93 < 0.001 

T1 + dMRI 3.3 1.9 2.0 0.54 < 0.001 0.86 < 0.001 0.83 < 0.001 

Magnitude of the uncorrected ( δb ) , linearly-corrected ( δ) and quadratically-corrected ( δq ) estimates of 

delta obtained from unimodal (T1 or dMRI IDPs) and multimodal (T1 + dMRI) IDPs, and the associations of 

chronological age (Y) with the uncorrected brain age prediction (Y B ), linearly-corrected brain age predic- 

tion (Y L ) and quadratically-corrected (Y Q ) brain age prediction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

alterations which overlapped in the association (ILF, IFO, SLF) and

commissural (FMA) fiber bundles. Nonetheless, FA showed specific

sleep-related changes in the UF and CBH fiber bundles whereas

MD revealed non–overlapping alterations in the ATR. 

Lastly, we observed a multimodal component (i.e., IC 5 ) which

revealed a significant nonlinear relationship with sleep fragmenta-

tion, i.e., WASO. IC 5 exhibited a markedly inverted U-shape profile

that reflects widespread GM and localized WM microstructural al-

terations with WASO ( Fig. 4 E). The IC 5 subject loadings displayed a

nearly symmetrical inverted U-shape profile as a result of stronger

loadings being associated with less sleep disturbance (WASO ≤ 36

minutes) and weaker loadings relating to more frequent sleep dis-

turbance (WASO > 36 minutes). WASO explained 20% of the vari-

ance within IC 5 (R 

2 = 0.20, p = 0.0017 corrected). The inverted

U-shape relationship between the IC 5 loading and WASO was pre-

dominantly driven by the GM volume (54%) followed by FA (27%)

and MD (16%). 

Spatially, the GM changes in IC 5 were evident in the frontal,

temporal, and occipital areas including portions of the cerebellum

( Fig. 5 ). FA and MD maps showed significant WM alterations that

overlapped in small clusters that form part of the association (ILF,

IFO, SLF), projection (ATR), and commissural (FMA) fiber bundles.

In addition, there were evidence of distinct sleep-related effects in

the FA map that correspond to the limbic (CBH, FX) fiber bundles.

Similarly, the MD map showed the presence of non–overlapping

sleep-related effects in the PTR. 

3.7. Brain age predictions 

Using multimodal imaging features representing regional GM

volumes and WM tract microstructure, we calculated the uncor-

rected ( δb ), corrected linear ( δ), and quadratic ( δq ) estimates of

brain age delta ( Table 2 ). The magnitude of δ and δq showed that

in the studied cohort, the estimated brain age (using the mul-

timodal neuroimaging features) was on average approximately 2

years older than the chronological age. Both δ and δq ( | ̄δ| = 1.9;

| δq | = 2.0) were notably smaller than δb ( | δb | = 3.3), i.e., the bi-

ased/uncorrected estimate that is typically used in brain age pre-

diction studies. Given that brain age delta corresponds to the resid-

uals in the brain prediction model, the smaller δ and δq (which are

orthogonal to age) improve the associations between the respective

chronological age and predicted brain age (Y L and Y Q respectively)

compared to the predicted brain age Y B using δb ( Table 2 ), as ex-

pected, and shown before ( Smith et al., 2019 ). 

Brain age δ estimates using linear corrections showed signifi-

cant associations with inadequate sleep indices. Notably, there was

no significant association between uncorrected δb with either PSQI

or WASO. 

When using unimodal (either T1 or dMRI) IDPs to estimate

brain age delta, there was a significant relationship between the

linearly-corrected δ and PSQI (R = 0.31, p = 0.039 FDR) but only

when the T1 IDPs were applied in the brain age prediction model

( Fig. 6 A; there was no significant relationship between unimodal δ
and WASO, Fig. 6 B). There was no significant relationship between

the quadratically-corrected δq and PSQI when the unimodal IDPs

were used. 

When using multimodal (T1 + dMRI) IDPs to estimate brain age

delta, the linearly-corrected δ estimate was significantly associated

with PSQI (R = 0.32, p = 0.039 FDR, Fig. 6 C; multimodal δ was not

significantly associated with WASO, Fig. 6 D). There was no signifi-

cant relationship between the quadratically-corrected δq and PSQI

when the multimodal IDPs were used. 

Taken together, the results indicate that poor sleep quality is

associated with accelerated brain ageing, i.e., brain age which is

∼2 years older than its chronological age. 

4. Discussion 

The ageing process, which results in structural brain deterio-

ration and affects cognitive performance and daily functioning, is

inevitable. However, not all older adults experience sharp cogni-

tive decline. Some individuals undergo only gradual drop in cog-

nitive functioning or even retain high levels of mental capac-

ity throughout lifespan ( Hayden et al., 2011 ). Substantial inter-

individual differences in the pace of age-related brain changes un-

derlying cognitive decline have been reported and attributed to

modifiable lifestyle factors (for review see Cabeza et al., 2017 ;

Eavani et al., 2018 ; Raz & Rodrigue, 2006 ). The existing evidence

suggest a potential link between sleep problems and brain age-

ing (e.g., Sexton et al., 2014 ; Sexton et al., 2017 ; Wassenaar et al.,

2019 ). Consequently, disentangling the heterogeneity of brain age-

ing, and the effects of sleep on differential trajectories of normal

versus pathologic brain ageing is of high interest. 

The current study explored volumetric and microstructural

brain changes in healthy ageing and used estimates of brain age

delta (difference between chronological and apparent brain age

assessed using neuroimaging data) to investigate the associations

of age-related brain changes with sleep quality and sleep frag-

mentation. Linked independent component analysis revealed a

significant interlinked linear decrease of the global GM and WM

microstructure with increasing age and sleep problems (both poor

sleep quality and sleep fragmentation) as well as a degree of inter-

individual variability in the observed age-related and inadequate

sleep-related brain deterioration. These joint associations between

brain structural and microstructural features with inadequate sleep

indices were not evident using unimodal analyses (VBM and TBSS).

Furthermore, brain age delta, estimated with linear age-bias

correction ( Smith et al., 2019 ) from GM structural and WM mi-

crostructural neuroimaging features, revealed significant associa-

tion between poor sleep quality, and the accelerated brain aging.

These associations were not evident when using the uncorrected

(biased) estimates often used in brain-age prediction studies (for

discussion see Le et al., 2018 ; Liang et al., 2019 ). Specifically, our

findings demonstrated a 2-year deviation above the chronological

age (i.e., accelerated ageing) linked to sleep problems. We discuss

our findings in context of prior research investigating the effects of
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Fig. 6. Relationships between brain age delta and sleep measures using the unimodal (T1) and multimodal (T1 + dMRI) IDPs. (A) δ was significantly associated with PSQI 

using the unimodal T1 IDPs. (B) δ was not significantly associated with WASO after applying FDR correction when the unimodal T1 IDPs were used. (C) δ was significantly 

related to PSQI with the multimodal (T1 + dMRI) IDPs. (D) δ was not significantly associated with WASO when the multimodal (T1 + dMRI) IDPs were used. All relationships 

between brain age delta and sleep measures are FDR-corrected for multiple comparisons set at p < 0.05. Note that the raw PSQI and WASO scores are square root and 

log-transformed, respectively (see Section 2.2 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sleep on age-related brain deterioration as well as research focus-

ing on the use “brain age gap” as a biomarker of brain ageing. 

The reported heterogeneity of age-related brain changes raises

a possibility of maintaining more youthful brain later in life. While,

both genetic and environmental influences likely account for vari-

ation in ageing, recent research strongly suggests that modifi-

able lifestyle factors, such as sleep, diet and physical activity,

could hold the key to slowing down brain, and cognitive ageing

(for review see Wassenaar et al., 2019 ). As we get older waking

up refreshed after a good night sleep becomes a challenge due

to difficulties in maintaining or initiating sleep, fragmentation of

sleep, increased daytime napping and changes in wake-sleep cy-

cle ( Miner & Kryger, 2017 ; Varma et al., 2019 ). The loss of good

night sleep has a detrimental effect on overall health, reduces

longevity, and worsens cognitive performance ( André et al., 2019 ;

Gangwisch et al., 2008 ; Mattis & Sehgal, 2016 ). While older adults

might have increased vulnerability to sleep problems and they

often sleep less, the sleep recommendations for that age group

are similar to these given to general adult population (7-9 hours

per day; Hirshkowitz et al., 2015 ). Difficulties falling asleep, short

sleep duration, excessive daytime sleepiness and napping can be

regarded as modifiable behavioural sleep problems exacerbated by

inadequate sleep hygiene, a set of behavioural practices, everyday

habits, and environmental factors required to achieve good night

sleep ( Lin et al., 2007 ). And sleep hygiene interventions have been

shown to be effective in alleviating sleep problems in older adults,

particularly increasing the efficiency of sleep, and decreasing sleep

fragmentation (e.g., Martin et al., 2017 ). Taken together, a growing

body of evidence strongly suggests that reduced sleep time and

poor sleep quality should no longer be viewed as intrinsically re-
lated to normal ageing but as potentially modifiable factors putting

older adults at risk of cognitive decline and dementia (e.g., Ju et al.,

2014 ; Keage et al., 2012 ; Lim et al., 2013 ; Wassenaar et al., 2019 ).

While there is a substantial number of studies linking short sleep

duration and/or poor sleep quality to grey matter atrophy and mi-

crostructural white matter changes, the evidence is inconsistent

( Fjell et al., 2021 ; Lo et al., 2014 ; Ramos et al., 2014 ; Sexton et al.,

2014 ; Sexton et al., 2020 ; Sexton et al., 2017 ; Spira et al., 2016 ;

Yaffe et al., 2016 ; Zitser et al., 2020 ). Some of the reported dis-

crepancies could be attributed to how sleep patterns are assessed,

how brain changes are characterized and/or differences in studied

population characteristics and/or sample size. 

A recent large longitudinal study (613 participants), spanning

over 28 years found no significant link between self-reported sleep

duration and either grey matter or white matter microstructure

( Zitser et al., 2020 ). However, it should be noted that Zitser and

colleagues only collected longitudinal measures of sleep duration,

while the brain changes were assessed at a single time-point.

There are 3 potential explanations of these null results. Firstly,

their study used unimodal analyses; we also could not find as-

sociations when performing unimodal analyses and only when

probing the joint variance across modalities effects could be

revealed. Analyses based on a single-item self-report of sleep

duration in combination of single modality derived measures of

GM or WM changes might not be sensitive enough to detect any

brain deterioration beyond the effect of age itself. Secondly, it is

plausible that not sleep duration per se but sleep quality or com-

bination of these 2 affects brain changes in older adults without

any diagnosis of sleep disorders. Thirdly, reliability of self-report

of sleep duration as the discrepancies between objective and
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frequently overestimated self-reported measures of sleep duration,

and their associations with health outcomes, are well documented

( Lauderdale et al., 2008 ; McSorley et al., 2019 ; Silva et al., 2007 ). 

The current study used a combination of objective (actigra-

phy based assessment of sleep fragmentation; WASO) and self-

reported (assessed by commonly used PSQI questionnaire) mea-

sures of inadequate sleep to explore associations between sleep

problems and age-related brain changes, hypothesizing that in-

adequate sleep accelerates brain ageing. We showed that self-

reported but objectively measured sleep disruptions were associ-

ated with accelerated brain ageing. Specifically, global PSQI score

indexing several common sleep dysfunctions (e.g., short sleep du-

ration, sleep latency, poor sleep efficiency, sleep disturbances and

daytime dysfunctions), was positively correlated with estimated

brain age delta. Thus, indicating that overall “poorer” sleep qual-

ity is indeed linked to a larger “brain age gap” i.e., deviation from

chronological age. Our findings suggest that subjective measures

of sleep disruptions and/or composite measures of self-reported

sleep problems are more sensitive to detect the associations be-

tween sleep and brain ageing as compared to single item self-

reported measures. Alternatively, it is plausible that overall poor

sleep quality rather than sleep duration itself (see Zitser et al.,

2020 ) has a substantially greater effect on brain deterioration in

neurotypical older adults. As the observed heterogeneity of brain

ageing can be attributed to both the large variability in the pace

of ageing and to a wide range of onset ages for ageing process,

the detection of any brain deterioration beyond the effect of age

itself, e.g., the impact of sleep, might be challenging. This per-

haps explains the discrepancies between our findings and some of

the prior studies examining sleep-related differences in brain age-

ing, which all independently examined patterns of either gray or

white matter changes estimated from a single MRI modality. Fur-

thermore, to increase sensitivity, we used here measures derived

from both structural and diffusion MRI to examine interlinked GM

and WM changes as well as estimated deviation from chronological

age (brain age delta; Smith et al., 2019 ) to investigate the link be-

tween age-related brain changes and inadequate sleep in a group

of neurotypical elderly participants. We explored that further us-

ing exploratory FLICA method ( Douaud et al., 2014 ; Groves et al.,

2011 ). 

The FLICA approach applied here demonstrated an interlinked

global GM and WM decrease with increasing age and a variabil-

ity in the observed age-related brain deterioration in the stud-

ied group of elderly participants. Importantly, FLICA revealed in-

terlinked GM, and WM changes driven by poor sleep quality as as-

sessed by PSQI. This is in line with both single modality and multi-

modal estimates of brain age delta, which proved to be a sensitive

biomarker of accelerated brain ageing linked to poor sleep qual-

ity. FLICA also identified a multimodal component associated with

sleep fragmentation (WASO). The U-shape versus linear profile of

the unique multimodal components revealed by FLICA are result

of differential contribution of GM volume, FA, and MD to each in-

dividual component ( Douaud et al., 2014 ; Groves et al., 2011 ). It

should be noted here that in contrast to FLICA, commonly used

unimodal approaches such as VBM or TBSS, separately using mea-

sures of either GM or WM changes, failed to detect any links be-

tween inadequate sleep indices, and brain deterioration in the ex-

amined group of elderly participants. Thus, these results strongly

indicate that multimodal analysis increases sensitivity when as-

sessing association between sleep problems, and brain ageing. 

“Brain age gap” estimates are increasingly being used as a

biomarker of brain’s health signaling increased risk of brain de-

terioration and predictors of progression from mild cognitive im-

pairment to dementia ( Cole & Franke, 2017 ; Gaser et al., 2013 ).

This method has been also applied to predict cognitive function-
ing in non–demented older adults and to identify lifestyle fac-

tors associated with maintaining a more youthful brain in old

age ( Boyle et al., 2021 ; Steffener et al., 2016 ). While many, espe-

cially earlier, “brain age gap” studies used estimates based on a

single MRI modality (for review see Cole & Franke, 2017 ; Franke

& Gasser, 2019 ), more recent approaches employed multimodal

datasets ( Cole, 2020 ; Smith et al., 2020 ; Smith et al., 2019 ). Here,

we used a recently developed multimodal technique to calculate

unbiased estimates of brain age delta (see Smith et al., 2019 ), in or-

der to explore the effects of sleep on the ageing brain, stipulating

that inadequate sleep would accelerate brain ageing. As proposed

by Smith and colleagues, this approach enables, to remove typical

biases affecting brain-age estimates (and lead to overestimation in

younger and underestimation in older individuals; for discussion

see Le et al., 2018 ; Liang et al., 2019 ; see also Beheshti et al., 2019 )

for similar approach) and increases sensitivity of associations with

lifestyle and/or socio-demographic variables. Indeed, we found that

the corrected (i.e., removal of age-related bias) brain age delta es-

timates outperformed the uncorrected (biased) estimates in their

predictive power and revealed associations with poor sleep qual-

ity (PSQI), not evident when the uncorrected delta estimates were

used. In the studied group of neurotypical older adults we found

2 years deviation above the chronological age, which was corre-

lated with poor sleep quality. A 2-year deviation from chronologi-

cal age might seem relatively small. However, to put our findings

in a broader perspective, it should be noted that a recent large

epidemiologic study identified a 4-year brain age gap to be asso-

ciated with dementia and predictive of low cognitive functioning

( Kaufmann et al., 2019 ). 

Our study jointly model’s covariation in GM and WM struc-

tural and/or microstructural features to examine links between in-

adequate sleep (assessed by a combination of objective and self-

reported measures) and accelerated brain ageing. While one po-

tential limitation of our study is the sample size (n = 50), it

should be noted that our brain delta estimations and all other

analyses are linear regression models with a few model parame-

ters. One caveat to our findings is that multiple lifestyle factors,

socio-economic factors (education, physical activity for instance)

and genetic influences, not just inadequate sleep, have been im-

plicated and shown to a varied degree influence accelerated brain

ageing (e.g., Smith et al., 2020 ; see also Steffener et al., 2016 vs

Nyberg et al., 2021 for contradictory evidence). Having more par-

ticipants and data (e.g. using the UK Biobank) will allow in the fu-

ture to disentangle such unique and additive effects. Still, our study

is informative in demonstrating for the first time the value of in-

corporating multi-modal neuroimaging information and joint mod-

eling for increasing sensitivity in capturing such associations. And

doing so in a focused, sleep-phenotyped (considerably more de-

tailed than done in larger-scale hypothesis-free initiatives, such as

the UK Biobank), aging participants cohort. Finally, a recent study

( Butler et al., 2021 ) based on a series of simulations and analy-

sis using T1-weighted scans from the Philadelphia Neurodevelop-

mental Cohort (age 8-22) concluded that current “brain age gap”

methods are not free from estimation errors as either might be

prone to age-related biases or by mitigating such biases might in-

flate results. Thus, despite methodological progress such as correc-

tion for dependence of estimates on age itself and use of multi-

modal data (employed here brain age delta, Smith et al., 2019 ), fur-

ther methodological advances in estimating deviations from devel-

opmental and normal ageing trajectories, and evaluation of appli-

cability of such methods to different age groups and clinical popu-

lations are needed. 

In conclusion, taking into account a recent evidence that a few

years deviation from normative brain ageing is one of the hall-

marks of dementia ( Kaufmann et al., 2019 ), we suggest that sleep
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problems in healthy older adults should be considered a modifiable

risk factor for dementia. Our findings also point to the aptitude of

behavioral intervention to combat the effects of inadequate sleep

on the ageing brain. However, it should be noted that any conclu-

sions drawn from our findings are limited by cross-sectional design

and thus further longitudinal studies, preferably based on multi-

modal approaches are needed. 
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