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Abstract

We present a sparse Bayesian unmixing algorithm BusineX: Bayesian Unmixing

for Sparse Inference-based Estimation of Fiber Crossings (X), for estimation of

white matter fiber parameters from compressed (under-sampled) diffusion MRI

(dMRI) data. BusineX combines compressive sensing with linear unmixing and

introduces sparsity to the previously proposed multiresolution data fusion al-

gorithm RubiX, resulting in a method for improved reconstruction, especially

from data with lower number of diffusion gradients. We formulate the estima-

tion of fiber parameters as a sparse signal recovery problem and propose a linear

unmixing framework with sparse Bayesian learning for the recovery of sparse

signals, the fiber orientations and volume fractions. The data is modeled using

a parametric spherical deconvolution approach and represented using a dictio-

nary created with the exponential decay components along different possible

diffusion directions. Volume fractions of fibers along these directions define the

dictionary weights. The proposed sparse inference, which is based on the dictio-

nary representation, considers the sparsity of fiber populations and exploits the

spatial redundancy in data representation, thereby facilitating inference from

under-sampled q-space. The algorithm improves parameter estimation from
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dMRI through data-dependent local learning of hyperparameters, at each voxel

and for each possible fiber orientation, that moderate the strength of priors gov-

erning the parameter variances. Experimental results on synthetic and in-vivo

data show improved accuracy with a lower uncertainty in fiber parameter esti-

mates. BusineX resolves a higher number of second and third fiber crossings.

For under-sampled data, the algorithm is also shown to produce more reliable

estimates.

Keywords: Sparse Bayesian learning, compressive sensing, linear unmixing ,

diffusion MRI, fiber orientation, sparse signal recovery

1. Introduction

1.1. White Matter Parameter Estimation

Multi-compartment models are used to represent the diffusion MR signal

from the brain white matter and to estimate microstructure features of the im-

aged tissue (Behrens et al., 2003; Panagiotaki et al., 2012; Daducci et al., 2015).

Estimation of orientations and volume fractions of anisotropic compartments in

these models helps infer the white matter fiber anatomy (Behrens et al., 2007).

Accurate estimation of these parameters is challenged by the relatively limited

spatial resolution of diffusion MRI (dMRI) data, which may lead to increased

partial volume artifacts. Advances in magnetic field strength have significantly

improved spatial resolution (Vu et al., 2015), although it may lead to increased

noise and scanning time. One effective way to mitigate the effects of noise is the

multiresolution data fusion approach introduced in RubiX (Sotiropoulos et al.,

2013), which combines high SNR characteristics of low resolution (LR) data with

high spatial specificity of high resolution (HR) data. It allows combining im-

ages with different diffusion contrast at different spatial resolutions and finding

the right trade-off between SNR and resolution. This method was further ex-

tended recently for fusion of data acquired at different magnetic field strengths,

combining the benefits of high spatial and angular resolutions (k / q-space com-

plementarity) (Sotiropoulos et al., 2016). In parallel to these approaches, the
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recent developments in compressive sensing (Ji et al., 2009; Otazo et al., 2015;

Paquette et al., 2015; Duarte-Carvajalino et al., 2014; Michael Lustig and Pauly,

2007; Seeger et al., 2010; Ramirez Manzanares et al., 2007) are effective ways to

deal with the increased scan time, which result in fewer measurements (diffusion

gradients) within a voxel.

Prior efforts in estimation of white matter fiber parameters include both

parametric approaches (Tuch et al., 2002; Behrens et al., 2003; Anderson, 2005;

Kaden et al., 2007; Sotiropoulos et al., 2008, 2013; Coupe et al., 2013; Scher-

rer et al., 2016) and non-parametric approaches (Tournier et al., 2004, 2007;

Ozarslan et al., 2006; Dell’Acqua et al., 2007; Aganj et al., 2010). These meth-

ods exploit multiple diffusion measurements with a large number of diffusion

gradients. Considering the fact that the number of crossing fiber bundles within

a voxel is limited, we propose a novel sparse signal recovery algorithm for im-

proved inference from data with under-sampled q-space (i.e., data acquired with

lower number of diffusion encoding directions). We introduce sparsity based rep-

resentation and inference into the data fusion approach of RubiX, combining the

benefits of regularized noise and reduced scan time.

1.2. Compressive Sensing and Sparse Bayesian Learning

Compressive sensing approaches exploit the sparsity for optimal acquisi-

tion and recovery of signals (Ji et al., 2009; Michael Lustig and Pauly, 2007).

Compressive sensing is used for reconstruction from accelerated imaging tech-

niques across different MRI modalities; in structural MRI (Otazo et al., 2015;

Michael Lustig and Pauly, 2007; Seeger, 2010; Seeger et al., 2010), functional

MRI (Zong et al., 2014), and dMRI (Duarte-Carvajalino et al., 2014; Ramirez Man-

zanares et al., 2007; Rathi et al., 2011; Tristan-Vega A, 2011; Aranda et al.,

2015). A comparison of sampling strategies and sparsifying transforms to im-

prove compressive sensing in diffusion spectrum imaging pointed out the impor-

tance of joint optimization of the sampling scheme and the sparsifying transform

(Paquette et al., 2015).

The seminal work by Tipping on sparse Bayesian learning (SBL) (Tipping,
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2001) using automatic relevance determination (ARD) (MacKay, 1994) provides

a framework for obtaining sparse solutions to regression and classification prob-

lems. The sparsity of parameters is enforced by selection of appropriate prior

probability distributions for the parameters to be estimated. Relevance learn-

ing is done in SBL by using a mixture of zero-mean Gaussian distributions with

individual hyperparameters for variance prior distributions. The hyperparam-

eters associated independently with every weight moderate the strength of the

prior and govern the variances of the Gaussian scale mixture, adapting to the

data. Considering the success of SBL for sparse signal recovery in fields such

as computer vision and machine learning (Wright et al., 2010), in this work we

use SBL for the recovery of sparse fiber parameters from dMRI.

1.3. Linear Unmixing

Data sample vectors are assumed to be composed of a mix of endmembers in

linear unmixing algorithms (Dobigeon et al., 2008). Linear unmixing algorithms

estimate both the number of endmembers and their individual contributions.

These algorithms are mostly used in the unmixing of component spectra of

hyperspectral imagery in remote sensing signal processing (Dobigeon et al., 2008;

Bioucas-Dias et al., 2012; Tang et al., 2015; Iordache et al., 2011; Pardo and

Sapiro, 2001; Castrodad et al., 2011).

In this work, we consider the multiple anisotropic components (correspond-

ing to fibers) and the single isotropic component in the diffusion model as the

endmembers in unmixing problem, and recover these endmembers using an

SBL based linear unmixing approach. Previous study (Daducci et al., 2014b)

has shown that l1 norm minimization based approaches for promoting spar-

sity, which are widely used in spherical deconvolution based methods, have the

drawback of inconsistency with the sum-to-one constraint (i.e., the physical

constraint that the volume fractions of anisotropic and isotropic compartments

within a voxel sum to unity) (Panagiotaki et al., 2012). They addressed the issue

using a constrained formulation between the data and a sparsity prior bounding

the l0 norm of the fiber orientation distributions (the number of fibers). We
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demonstrate that sparse Bayesian learning within a linear unmixing framework

is another way to address the sum-to-one and non-negativity (volume fractions

≥ 0) constraints, simultaneously promoting sparsity. The approach in SBL is

typically much sparser as it is based on the notion of setting weights to zero

(rather than constraining them to small values), and as it offers probabilistic

predictions without the need to set additional regularization parameters (Tip-

ping and Faul, 2002).

1.4. Proposed Method: Bayesian Unmixing for Sparse Inference-based Estima-

tion of Fiber Crossings (BusineX)

The above mentioned works on compressive sensing in dMRI utilized basis-

based transforms and exploited the sparsity in the basis representation. Our

approach in BusineX is different in several aspects. A major difference is the

Bayesian linear unmixing formulation with SBL based relevance learning. The

unmixing formulation makes the Bayesian inference hard, but it helps in re-

covering fiber parameters with better accuracy, especially when the number of

diffusion measurements are reduced. The SBL framework identifies relevant

fiber orientations by enforcing sparsity, and it further enhances accuracy in

estimation of multi-fiber volume fractions and orientations.

ARD has been used for data-adaptive estimation of fiber parameters (Behrens

et al., 2007), avoiding data unsupported model complexities. The relevance

learning in the proposed approach, which explicitly models sparsity, enhances

the relevance determination by tuning the variance prior hyperparameters in-

dividually and independently for each possible fiber orientation. The non-

negativity and sum-to-one constraints, which make the sparse representation

and inference challenging, are addressed using the linear unmixing framework.

The proposed BusineX algorithm exploits the spatial redundancy in data rep-

resentation, and it improves the estimation of fiber parameters. The number

of fibers that best fit the observed data is estimated by the automatic detec-

tion of number of endmembers using a reversible jump Markov chain Monte

Carlo (MCMC) sampler. In addition to the improvement in no-acceleration

5



case, the proposed algorithm is shown to produce reliable estimates from data

under-sampled in q-space, by a factor of up to four.

The results from a preliminary version of the proposed framework with linear

unmixing (without relevance learning using SBL) are presented in our prior work

(Pisharady et al., 2015). In this paper we extend the framework by introducing

SBL based relevance learning. The paper also presents detailed experimental

results and analysis, including comparisons of estimated fiber volume fractions

in addition to the fiber orientations and diffusivity.

2. Methods

This section details the proposed BusineX algorithm. The dictionary repre-

sentation of the HR data using compartment model (ball & stick) is described

in Subsection 2.1. The representation of LR data using a spatial partial vol-

ume model is briefly discussed in Subsection 2.2. The sparse Bayesian learning

approach and sparsity based linear unmixing algorithm are described in Sub-

sections 2.3 and 2.4 respectively. Subsection 2.5 explains the MCMC sampling

procedure.

2.1. Dictionary Representation of High Resolution Data

The HR data is represented using a dictionary containing exponential decay

component vectors in the compartment model of diffusion. The measured dMRI

signal at each HR voxel is first modeled using the ball & stick (1) model (Behrens

et al., 2003; Panagiotaki et al., 2012),

SkHR = S0
HR

[(
1−

N∑
n=1

fn

)
e−bkd +

N∑
n=1

fne
−bkd(gTk vn)2

]
(1)

where,

SkHR is the signal at HR voxel after application of kth diffusion-sensitizing

gradient with direction gk and b-value bk,

S0
HR is the HR signal without diffusion gradient applied,

fn is the volume fraction of anisotropic compartment with orientation vn, and

d is the apparent diffusivity.
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The measured signal at an HR voxel is the sum of the attenuation signal and

measurement noise (2),

ykHR =
SkHR
S0
HR

+ ηkHR. (2)

Based on (1) and (2), the measured signal along all K diffusion-sensitizing

directions can be written in a dictionary form (3) as

yHR =


e−b1d e−b1d(gT1 v1)2 . . . e−b1d(gT1 vN )2

...
...

. . .
...

e−bKd e−bKd(gTKv1)2 . . . e−bKd(gTKvN )2




f0

f1

...

fN

+ ηHR, (3)

where

f0 =

(
1−

N∑
n=1

fn

)
, fn ≥ 0.

Hence,

yHR = Ef+ηHR. (4)

In Equation (4), E represents the local dictionary matrix (5) for the HR diffusion

data and f is the sparse vector representation of the HR data in this dictionary

E. The non-zero entries in f define the number and volume fractions of fibers

(sticks) in a voxel.

E =


e−b1d e−b1d(gT1 v1)2 . . . e−b1d(gT1 vN )2

...
...

. . .
...

e−bKd e−bKd(gTKv1)2 . . . e−bKd(gTKvN )2

 . (5)

The possible orientations of anisotropic components in the dictionary (second

column onwards) are pre-specified and formed using a 5th order icosahedral

tessellation of the sphere with 10242 points. The estimated orientation is ap-

proximated to the nearest pre-specified orientation during the dictionary update

process.

With the above dictionary formulation, the problem of finding the number of

fibers, its volume fractions and orientations reduces to accurately estimating the
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sparse vector f . The estimation of the sparse vector f is detailed in Subsections

2.3 and 2.4. Another unknown parameter in the model, the apparent diffusivity

d, is estimated through the Bayesian inference that maximizes the joint posterior

probability of the HR and LR data, as per the multiresolution graphical model

in RubiX (Sotiropoulos et al., 2013), as detailed in Appendix A. The partial

volume model used to represent the LR data is discussed in the next Subsection

(Subsection 2.2).

2.2. Partial Volume Representation of Low Resolution Data

The significance of LR data is its high SNR, which is useful for regularizing

the noise in HR data, as in the RubiX framework (Sotiropoulos et al., 2013). In

the RubiX framework, the LR data and HR data are collected from the same

subject through two scans at different spatial resolutions (voxel sizes). The two

datasets are aligned (if necessary) using rigid body transformations. Once the

data is aligned, the LR data can be represented using corresponding HR data

(data that correspond to the same physical location, but at a different spatial

resolution grid), with a partial volume model (Sotiropoulos et al., 2013). The

model calculates attenuation signal at an LR voxel as a linear combination of

the signals at overlapping M HR voxels (6).

SkLR
S0
LR

=

M∑
m=1

wm
SkmHR
S0m
HR

, wm = e
− ‖rm−r0‖

2

γ2 . (6)

The HR signal contributes to the LR signal via a discretized Gaussian distance

weighing function (DWF) with weights wm given by the normalized Euclidean

distance between the DWF center r0 at LR voxel and the spatial position of

each HR voxel rm, and the unknown standard deviation of the DWF, γ. γ

is same for M HR voxels overlapped by an LR voxel, but can be different for

different LR voxels.

2.3. Hierarchical Bayesian Inference and Sparse Bayesian Learning

The volume fractions and fiber orientations are estimated using a semi-

supervised hierarchical Bayesian linear unmixing approach, an extension of
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sparse Bayesian inference dealing with constraints (Araki et al., 2009; Tipping,

2001). A hierarchical Bayesian framework (Fig. 1) is utilized for the sparse

inference. In Bayesian inference, prior probability distributions, namely priors,

are defined for constraining the parameters to be estimated (Jaynes, 1968). In

SBL a mixture of zero-mean Gaussian distributions with individual hyperpa-

rameters controlling the variances is used as the prior on the parameter to be

estimated (volume fractions here). Gamma distributions are used as hyperpri-

ors, which form the priors over the hyperparameters. The mixture of Gaussians

with hyperparameters associated independently with every weight was shown

equivalent to using a product of Student-t priors, once the hyperparameters are

integrated out (Tipping, 2001). This hierarchical formulation leads to a sparse

solution.

Figure 1: The hierarchical Bayesian network used in BusineX. ykLR and ykHR are the measured

signals along diffusion gradient direction k, at LR and HR voxels respectively. fn is the n-th

component of the anisotropic volume fractions vector and αn is the hyper-parameter in the

prior distribution of fn. The influence of the parameters on LR data is through the spatial

partial volume model (6).

Mathematically the prior over volume fractions is given by,

p(f |α) =

N∏
n=1

N (fn|0, α−1
n ), (7)
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where the hyper-parameter αn controls the variance of individual Gaussians.

The update procedure for αi (detailed in Subsection 2.4) is such that many of

the α are pushed to higher values, adapting to the data. The variance 1/α of

the corresponding Gaussians are pushed towards zero which forces the corre-

sponding weights to be zero (or negligibly small), leading to a sparse solution.

The proposed sparse approach and independent tuning of the hyperparam-

eters for each voxel and for each possible fiber orientation promote adaptation

of the estimated number of fibers to the data. Thus the complexity of fiber

patterns (single fiber vs. multiple fibers) at each voxel is decided better by the

data (refer to Section 4.1 for a discussion).

2.4. Sparsity based Bayesian Linear Unmixing Inference

Finding the volume fractions f in (4) with a large number of possible fiber

orientations (N) is an ill-posed problem. We introduce sparsity in the dictionary

and estimation process, to propose an efficient algorithm for volume fraction and

fiber orientation estimations. The non-negativity and sum-to-one constraints of

volume fractions make the sparse representation and inference especially diffi-

cult. We fix the sparsity level (the number of fibers, which is the same as the

number of non-zero anisotropic components) to a small number n0 (n0 << N).

The problem is then formulated as a linear unmixing inference where the diffu-

sion signals correspond to a mixture of the dictionary components with positive

weights f . We follow a semi-supervised hierarchical Bayesian linear unmixing

approach (Dobigeon et al., 2008) for sparsity-based inference of fibers. The

method is semi-supervised because the dictionary is known for a given diffusiv-

ity, gradient directions, b-values, and possible fiber orientations, but we don’t

know the values of diffusivity, fiber orientations, or the volume fractions within

each compartment.

Assuming Gaussian noise1 the likelihood function of the HR data can be

1We implemented Rician noise model (Henkelman, 1985) as well, which provided identical

results. Gaussian noise model is presented here for simplicity, as our focus is on the sparse
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expressed as (8)

p
(
yHR|f, α, σ2

)
=

(
1

2πσ2

)K
2

e−
‖yHR−Ef‖

2
2

2σ2 , (8)

where σ2 corresponds to the variance of the error in representation of yHR

using dictionary E and volume fractions f . Let f+ = [f1, . . . , fn0
]T be the

volume fractions with n0 non-zero anisotropic components, then f+ belongs to

a simplex S (9),

S =

{
f+|fn > 0,∀n = 1, . . . , n0,

n0∑
n=1

fn ≤ 1

}
. (9)

Once the prior and likelihood are defined, Bayesian inference proceeds by

calculating the posterior using Bayes’ rule. The generative model of RubiX is

adapted here with a novel inference algorithm for the volume fractions and fiber

orientations. The proposed algorithm introduces an additional layer of adaption

to the data adaptive ARD framework, to enhance the automatic detection of

the number of fibers, by tuning the volume fraction variance for each possible

fiber orientation and by explicitly modeling sparsity to improve the relevance

determination.

The volume fractions posterior is given by (10) (Tipping, 2001)

p
(
f+, α, σ2|yHR

)
=
p
(
yHR|f+, α, σ2

)
p
(
f+, α, σ2

)
p (yHR)

. (10)

We cannot compute (10) as the normalizing integral (11) cannot be computed

analytically.

p (yHR) =

∫
p
(
yHR|f+, α, σ2

)
p
(
f+, α, σ2

)
df+dα dσ2. (11)

Instead the posterior (10) is decomposed as

p
(
f+, α, σ2|yHR

)
= p

(
f+|yHR, α, σ2

)
p
(
α, σ2|yHR

)
, (12)

where

p
(
f+|yHR, α, σ2

)
=
p
(
yHR|f+, σ2

)
p (f+|α)

p (yHR|α, σ2)
. (13)

Bayesian unmixing inference.

11



We can compute (13) as its normalizing integral (14) is a convolution of Gaus-

sians (Tipping, 2001),

p
(
yHR|α, σ2

)
=

∫
p
(
yHR|f+, σ2

)
p
(
f+|α

)
df+. (14)

We now introduce the linear unmixing framework to the sparse inference.

Blind unmixing under positivity constraints was introduced by Moussaoui et

al. (Moussaoui et al., 2006). Dobigeon et al. (Dobigeon et al., 2008) further

extended this by including the sum-to-one constraint, attempting to resolve the

scale indeterminacy inherent in blind source separation problems. We intro-

duce these linear unmixing constraints to the posterior computation in (13), to

propose sparsity based linear unmixing inference (15),

p
(
f+|yHR, α, σ2

)
∼ e−(f+−µf)

T
Λ−1
f (f+−µf)1S(f+), (15)

where

Λf =
[
σ−2

(
E+
n0 − e0u

T
)T (

E+
n0 − e0u

T
)

+A
]−1

, (16)

and

µf = σ−2Λf
(
E+
n0 − e0u

T
)T

(yHR − e0) , (17)

with u is a 1 x n0 vector, [1, . . . , 1]
T

, and A = diag(α0, α1, ..., αN ). E+
n0 contains

the columns of E that correspond to n0 non-zero coefficients in f+ (effective

dictionary) and e0 is the column corresponding to the isotropic compartment

(ball in the HR model). 1S(f+) in (15) is 1 if f+ ∈ S and 0 otherwise.

Each hyper-parameter αn in A are updated iteratively (Tipping, 2001) as

per (18),

αnewn = γn/µ
2
n, (18)

where γn = 1− αn ∗ Λnn, and Λnn is the nth diagonal element of the posterior

volume fractions covariance (16). The noise variance σ2 is updated as per (19),

(σ2)new =
‖(yHR − e0)− (E+

n0 − e0u
T )µf‖2

K −
∑
n γn

. (19)

The priors we used for volume fractions are a mixture of Gaussians with

variances controlled by the hyperparameters αn, as detailed in Subsection 2.3.
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We followed the rest of the parameter priors and the inference procedure2, in-

cluding the estimation of diffusivity d, as in RubiX (Sotiropoulos et al., 2013).

The priors used for S0 and σ are unconditional and non-informative (uniform).

Conditional priors are used for orientation and diffusivity and are defined as

a mixture of Watson distributions with non-informative hyper-parameter for

orientation and normal distribution with informative hyper-parameter for dif-

fusivity.

2.5. Hybrid Metropolis-Within, Reversible Jump Gibbs Sampler for Detecting

the Number of Fibers

The generation of samples according to (15-17) is accomplished using a Gibbs

sampler (Algorithm 1). It proceeds by repeated application of (18) and (19) and

the corresponding updates of posterior statistics Λf and µf from (16) and (17).

Each column in the effective dictionary E+
n0 can be switched at random with

another to test a different fiber orientation.

In order to find the number of fibers that best fits the data automatically we

used a metropolis-within reversible jump Gibbs sampler (Dobigeon et al., 2008)

which kills or generates fibers as per the death and birth probabilities (Denison

et al., 2002), respectively (Algorithm 1). The following 3 cases can occur in

each iteration:

• CASE 1 - Add a new fiber through BIRTH move: The volume fraction

of the new fiber is drawn from a Beta distribution, Be(1, n0). The other

anisotropic volume fractions are scaled so that anisotropic and isotropic

volume fractions sum to one.

• CASE 2 - Remove a fiber through DEATH move: The remaining anisotropic

volume fractions are scaled so that anisotropic and isotropic volume frac-

tions sum to one.

2See Appendix A for the detailed inference procedure.
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Algorithm 1 Hybrid Metropolis-Within Reversible Jump Gibbs Sampler

1: procedure Initialization

2: Initialize E; % dictionary, using ball & stick model fitting (1)

3: Initialize f+; % volume fractions, using ball & stick model fitting (1)

4: Initialize prior probabilities;

5: Initialize α+;

6: end procedure

7: procedure Iterations % we used 1,500 iterations

8: for i=1 to # iterations do

9: Calculate Λf and µf ; % posterior covariance & mean, (16) & (17)

10: Update α+; % variance of volume fractions prior (18)

11: Update σ2; % noise variance (19)

12: Switch (p) % p is random [0−1], cases p ≤ 1/3, 1/3 < p ≤ 2/3, p > 2/3

13: CASE 1: Propose BIRTH move, n0 = n0 + 1;

14: CASE 2: Propose DEATH move, n0 = n0 − 1;

15: CASE 3: Propose SWITCH move, n0 = n0;

16: End

17: Accept / Reject BIRTH / DEATH / SWITCH move;

18: propose new f+; % new volume fractions proposal

19: end for

20: end procedure

14



• CASE 3 - Maintain the number of fibers through SWITCH move: Neither

a fiber is added nor removed. The inference is proceeded by switching the

fiber orientations, columns in the effective dictionary E+
n0 .

In our experiments, we limited3 the maximum number of anisotropic compo-

nents (the number of fibers), nmax0 to 3. No BIRTH move is allowed when

n0 = nmax0 and no DEATH move is allowed when n0 = 1. In all iterations, all

possible cases (from the above 3 cases) are kept equally likely, i.e. probability

of 1/3 when all the 3 cases are possible and 1/2 when only 2 cases are possible.

The update in the number of fibers is accepted or rejected based on the

move acceptance probability. The acceptance probability for a BIRTH move ρb

is given by ρb = min{1, Ab}, where Ab is the acceptance ratio. The acceptance

probability for a DEATH move ρd is given by ρd = min{1, Ad}, where Ad is the

rejection ratio (refer Appendix B for the derivation of Ab and Ad). SWITCH

moves are accepted or rejected using Metropolis sampling criterion.

3. Experiments and Results

We conducted experiments using 2 sets of synthetic data and one set of

in-vivo data. The datasets and the results are detailed in this section.

3.1. Synthetic Data from HARDI Reconstruction Challenge

The first synthetic data we used is simulated from the 2 structured field

phantoms used to evaluate algorithms in the HARDI reconstruction challenge

organized as part of the ISBI 2012 conference (Daducci et al., 2014a). We used

this challenging dataset with complex fiber configurations to test the general

performance of the algorithm and to compare it with other existing methods.

We used 50 diffusion gradients to simulate the data, using a multi-Tensor model.

3We limited the maximum number of fibers nmax
0 to 3 to have a reasonable convergence

time, and since more than 3 fibers is not expected. The algorithm is generic with respect to

nmax
0 , with increased convergence time for higher nmax

0 .
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Daducci et al. (Daducci et al., 2014a) reported the results of the challenge and

compared 20 algorithms used for recovering the intra-voxel fiber structures.

Here we compare the performance of BusineX using these reported results.

There are 2 phantoms in the structured field dataset, a simple one (the

dataset released with the challenge announcement, the training set, hereafter

called ISBI dataset-1) and a complex one (the dataset used to evaluate algo-

rithms to decide the winner, the testing set, hereafter called ISBI dataset-2).

Both phantoms had a size of 16× 16× 5 voxels. We copied the 5th slice of the

phantom and added it as an additional slice to generate the dMRI data with

an image size 16× 16× 6, using the simulation algorithm the challenge organiz-

ers released (http://hardi.epfl.ch/static/events/2012_ISBI/download.

html#testingdata). We added the 6th slice as we need to simulate the LR

dataset with half the resolution with an image size 8 × 8 × 3, which we did by

down-sampling the HR data to LR image size (averaging the signals at groups

of 2 × 2 × 2 HR voxels). We report the average results from all the voxels (6

slices) making the comparisons fair with the average results (5 slices) reported

previously (Daducci et al., 2014a). The HR data is simulated at an SNR 10

(with Rician noise) (Daducci et al., 2014a). A factor of 8/
√

2 is maintained in

the ratio of SNR of LR to that of HR signal (Sotiropoulos et al., 2013).

Fig. 2 shows a visualization of the orientations and the sum of anisotropic

volume fractions (upper panels) estimated from ISBI dataset-1 (SNR=10), which

has the same sum of volume fractions (unity) at every voxel. The histograms of

corresponding sum of anisotropic volume fractions (lower left panel) and orien-

tation error (lower right panel) for all the voxels show the improved estimations

in BusineX.

We further evaluated and compared the performance of BusineX using 2

criteria, the correct assessment of the number of fiber populations expressed

with success rate and the error in orientation estimation expressed with angular

precision (Daducci et al., 2014a). These measures are reported for the testing

set, the ISBI dataset-2 (complex dataset).

16

http://hardi.epfl.ch/static/events/2012_ISBI/download.html#testingdata
http://hardi.epfl.ch/static/events/2012_ISBI/download.html#testingdata


Figure 2: Comparison showing volume fraction and orientation estimations from the ISBI

dataset-1. The SNR of the data is 10. Color coded orientation estimates from BusineX

(upper left panel) and RubiX (upper right panel) are shown with the corresponding sum of

anisotropic volume fractions in the background. Lower panels show the normalized histograms

of sum of anisotropic volume fractions (left) and orientation error (right) for both cases, for all

the 6 slices. The comparisons show the improved volume fraction and orientation estimations

in BusineX (ground truth for the sum of anisotropic volume fractions is one at every voxel).
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3.1.1. Success Rate and Angular Precision

The success rate and angular precision is calculated as below (20 and 21)

(Daducci et al., 2014a).

Success Rate (SR) =

(
1− |Mtrue −Mestimated|

Mtrue

)
× 100, (20)

where Mtrue and Mestimated are, respectively, the true and estimated number of

fiber compartments inside a voxel.

Angular Precision (AP ) =
180

π
arccos(|dtrue · destimated|), (21)

where dtrue and destimated are a pair of true and estimated fiber orientation

vectors in a voxel.

The reported results are the mean SR and AP across all voxels and fibers

(Table 1). The better performance of BusineX is evident in these results. In

particular, for dataset-2 (the dataset used to evaluate algorithms to decide the

winner of the challenge), BusineX provided an SR of 80.36%, 11.13% better

than RubiX (69.23%) and 16.36% better than the algorithm reported as top

in SR (64%) (Rodriguez et al., 2010), in the comparison provided in (Daducci

et al., 2014a) (Refer Fig. 9, page 396). This shows the benefit of BusineX in

detecting fibers more accurately, which is made possible through the explicit

calculation of volume fractions posterior probability (15), as detailed in Section

2.4. Table 1 also reports the interquartile range representing the dispersion in

AP and also the number of diffusion measurements used by each method.

The results reported in Table 1 are obtained using the uncorrected SNRs

from (Daducci et al., 2014a). The SNR corrected for the variable echo-time

(TE) is 24.3 in our case (b-values 1500, see Table II in (Daducci et al., 2014a)).

We also did experiments with a corrected SNR of 24.3 (instead of 10). The

corresponding SR and AP are 82.99% and 4.88 degrees respectively.

In order to study whether the estimated fiber populations are close enough to

the real ones, we calculated the SR using the tolerance cone approach (Daducci

et al., 2014a). An estimated fiber is considered resolved only if the corresponding
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Table 1: Mean Success Rate and Angular Precision - ISBI dataset-2

Success Rate Mean Angular Interquartile # diffusion

(%) Precision (Degrees) Range (Degrees) measurements

BusineX 80.36 5.27 6.8 50

RubiX 69.23 6.98 7.9 50

Results* previously reported (Daducci et al., 2014a)

DSILR 64.00 7.50 5.4 257

(Rodriguez et al., 2010)

NN -L2 60.30 6.50 7.33 48

(Ramirez Manzanares et al., 2007)

DOT 57.06 11.22 8.2 60

(Ozarslan et al., 2006)

L2-L2 55.29 7.84 6.35 37

(Canales Rodriguez et al., 2009)

QBICSA 52.06 15.54 12.9 60

(Aganj et al., 2010)

CSD 49.12 11.08 8.4 60

(Tournier et al., 2007)

DSI 37.65 14.19 17.9 257

(Wedeen et al., 2005)

DTI 34.7 16.48 13.75 6

(Basser et al., 1994)

* These results are the best approximations from the graphical plot in Fig. 9, page 396, (Daducci et al., 2014a).

DTI- diffusion tensor imaging, DSI- diffusion spectrum imaging, DSILR- DSI Lucy-Richardson, DOT - diffusion

orientation transform, QBICSA- Q-ball imaging constant solid angle, CSD- constrained spherical deconvolution.
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orientation falls within a tolerance cone of 20◦ around the real fiber population.

This measure, which is reported as SR6 (Daducci et al., 2014a) is 70.95% for

BusineX and 63.86% for RubiX.

3.2. Synthetic Data Simulated using Camino

To study the effect of under-sampling and to have uniform ground truth

values for volume fractions, we simulated a second synthetic dataset using the

Camino toolbox (Cook et al., 2006). A Tensor-Cylinder-Sphere model is used

to simulate single and crossing fiber structures (with 2 and 3 fibers) with image

size 10× 10× 2 (LR) and 20× 20× 4 (HR), at different under-sampling factors.

The diffusivity value used to simulate the data is 1.7 x 10−9m2/s. To make

the fiber pattern in the image continuously varying, the orientation of fibers at

each HR voxel is selected such that it varies across each dimension by 1 degree

/ voxel. A minimum crossing angle of 45 degrees is maintained in this case.

Diffusion signals are simulated along 200 uniformly distributed directions, with

a b-value of 1500 s/mm2. The noise free LR signal is created by down-sampling

the HR data to LR image size (averaging the signals at groups of 2× 2× 2 HR

voxels). Rician noise is added to both LR and HR images by adding zero-mean

Gaussian signal in quadrature. A factor of 8/
√

2 is maintained in the ratio of

SNR of LR to that of HR signal (lower noise in LR data) (Sotiropoulos et al.,

2013). We simulated HR data with two SNRs, 15 and 25. Under-sampling of

diffusion directions is done by a factor of up to four to simulate acceleration in

image acquisition.

The algorithm performance is compared with the ball & stick model applied

to the HR dataset (using BedpostX tool (Behrens et al., 2007) in FSL) and Ru-

biX (Sotiropoulos et al., 2013) applied to HR and LR datasets. Both RubiX and

BusineX are applied to HR and LR datasets, with the first 100 measurements

forming the no-acceleration data. This is done in order to approximately match

the acquisition time, making the comparisons fair (as BedpostX uses data at

only HR resolution). The 100 measurements are under-sampled again up to

a factor of four to simulate accelerations. We used the protocol proposed by
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Caruyer et al. (Caruyer et al., 2011) for under-sampling, which makes any first

N samples isotropic.

3.2.1. Fiber Orientation Estimation

Fig. 3 shows the mean error and standard deviation in fiber orientation

estimation, and the variations with acceleration, for 1, 2, and 3 fiber cases,

with SNR 15 and 25. On comparison, BusineX provided better estimation

accuracy, at a slightly lower uncertainty. The variation in estimation error with

acceleration is lower in BusineX.

Figure 3: Comparison of fiber orientation estimation error (mean across 1600 voxels) and

its variation with acceleration factor (under-sampling in number of diffusion measurements).

Three data points with no under-sampling (1), under-sampling by a factor of 50% (2) and

under-sampling by a factor of 75% (4) are shown. Y-axis represents mean error across voxels

and across fibers in 2 and 3 fiber cases. The error bars shown represent the standard deviation

in estimation (scaled by 50% for all the methods, for better visualization), representing the

estimation uncertainty.
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3.2.2. Fiber Volume Fraction Estimation

Fig. 4 presents the histogram results of volume fraction estimation in the 2

fiber case with SNR 15. The true value of both fiber 1 and 2 volume fractions

is 0.3. The comparisons show the improved volume fraction estimation in both

first and second fiber cases. A similar comparison in the 3 fiber case is shown

in Fig. 5, in which each fiber has equal volume fractions of 0.25.

Figure 4: Comparison of volume fraction estimation in the 2 fibers case (SNR=15, no-

acceleration). (a) & (b) are histograms of estimated volume fractions of fiber #1 & # 2

respectively. Each of the fibers have a true volume fraction of 0.30, marked with red cross on

the x-axis. The total number of voxels having a volume fraction of 0.3 is 1600.

Figure 5: Comparison of volume fraction estimation in the 3 fibers case (SNR=15, no-

acceleration). (a)-(c) are histograms of estimated volume fractions of fiber #1, #2, & #3

respectively. Each of the fibers have a true volume fraction of 0.25, marked with red cross on

the x-axis. The total number of voxels having a volume fraction of 0.25 is 1600.

The above comparisons (Fig. 4 and 5) are on estimation from data without
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acceleration. Fig. 6 shows a comparison under different accelerations (under-

sampling factors) in 2 fibers case with SNR 15.

Figure 6: Comparison of volume fraction estimation of fiber 1 (row 1) and fiber 2 (row 2) at

different under-sampling factors. Left column shows the case with no under-sampling, middle

column shows the case with 50% under-sampling, and the right column shows the case with

75% under-sampling. Each of the fibers have a true volume fraction of 0.30, marked with red

cross on the x-axis. The total number of voxels having a volume fraction of 0.3 is 1600. The

SNR of the data is 15.

3.2.3. Diffusivity Estimation

We used a diffusivity value of 1.7 x 10−9m2/s for the data simulation using

Camino. The estimated mean diffusivity (mean of the diffusivity across 1600

voxels) is 1.6868 x 10−9m2/s with a variance 1.02 x 10−21. RubiX provided

identical results: mean diffusivity of 1.6813 x 10−9m2/s with a variance 1.14

x 10−21. BedpostX provided slightly lower accuracy in diffusivity estimation:

1.6296 x 10−9m2/s with a variance of 5.14 x 10−21.
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3.2.4. Estimation Uncertainty

Table 2 provides mean span of 95% cones of uncertainty, which is a measure

of the width of estimated distributions, representing the uncertainty in esti-

mation. The estimation uncertainty in BusineX is slightly better than that in

RubiX, and the estimation uncertainty in BedpostX is approximately two times

that in BusineX.

Table 2: Comparison of estimation uncertainties - Mean span of 95% cones of orientation

uncertainty (in degrees)

No under-sampling 50% under-sampling 75% under-sampling

Fiber 1 Fiber 2 Fiber 1 Fiber 2 Fiber 1 Fiber 2

BusineX 2.55 2.62 3.31 3.47 4.63 5.00

RubiX 2.65 2.74 3.50 3.70 4.80 5.12

BedpostX 4.88 5.24 6.93 7.89 10.7 18.28

3.3. In-vivo Data Acquired using 3T Siemens Prisma Scanner

We acquired in-vivo data from a healthy subject using 3T Siemens Prisma

scanner. For HR acquisitions the acquisition matrix was 140× 140× 92 voxels

with a resolution of 1.5×1.5×1.5 mm3. For LR acquisitions the resolution was

reduced to 3 × 3 × 3 mm3 for an acquisition matrix size 70 × 70 × 46 voxels.

Diffusion weighting was applied in 200 evenly spaced directions with a b-value

of 1500 s/mm2. Twenty one volumes without diffusion weighting are equally

interleaved in the dataset.

3.3.1. In-vivo Data Results

We report 4 sets of results from the in-vivo experiments showing, a) the

stability of fiber orientation and volume fraction estimates with acceleration

(Fig. 7), b) improved estimation of orientation and volume fractions (Fig. 8, 9

& 10), c) improved detection of second and third fiber crossings (quantitative,
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Fig. 11), and d) improved diffusivity estimation (Fig. 12). We used the Con-

nectome Workbench (Marcus et al., 2011) from the Human Connectome Project

for visualizing the results4 (Fig. 7-10).

Fig. 7 shows a representative comparison of fiber orientation and sum of

volume fractions estimates at different accelerations (under-sampling factors in

number of diffusion scans). The region shown is the centrum semiovale area,

where commissural fibers (the corpus callosum, CC) and association fibers (the

superior longitudinal fasciculus, SLF) crosses the projection fibers (the corti-

cospinal tract, CST). The comparison shows the robustness of fiber orientation

and volume fraction estimates with acceleration.

We compare our in-vivo results to the reconstructions provided by RubiX

(Sotiropoulos et al., 2013), BedpostX (Behrens et al., 2007), and Constrained

Spherical Deconvolution (CSD) (Tournier et al., 2007). The implementations

of BedpostX available in FSL (Jenkinson et al., 2012a) and CSD available in

MRtrix3 (Tournier et al., 2012) are used for the experiments. The method used

for calculation of the response function is tourneir and for fiber orientation

distribution is csd. The spherical harmonic order (lmax) used is the default

value in MRtrix3 (lmax = 8). The visualization tool in MRtrix (mrview) is used

to visualize the estimated Orientation Distribution Functions (ODFs).

Fig. 8 provides representative comparisons from the centrum semiovale area,

showing improved detection of crossing fibers by BusineX, as compared to Ru-

biX. Fig. 9 compares performance of BusineX with that of RubiX, BedpostX,

and CSD, showing improved estimations of the fibers crossing the pons. The

highlighted regions show improved detection of crossing fibers by BusineX. We

calculated the mean sum of volume fractions of first, second, and third fibers

from the region of interest (ROI) highlighted in red in Fig. 9. BusineX, Ru-

biX, and BedpostX provided values of 0.469, 0.399, and 0.408 respectively. The

4The processing in Workbench estimates bingham distributions from the set of estimated

posterior fiber parameter samples, for each fiber orientation in a voxel which is labeled a

structure identifier (Marcus et al., 2011).
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Figure 7: Comparison showing the stability of fiber orientation and volume fraction estimates

with acceleration (under-sampling). Upper panel shows color coded orientation estimates at

the region near the centrum semiovale, highlighted in the coronal view in lower panel. The

background to the orientation estimates is the sum of anisotropic volume fractions. In the

upper panel left column shows the case with no under-sampling, middle column shows the case

with 50% under-sampling, and the right column shows the case with 75% under-sampling.
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Figure 8: Comparison between BusineX and RubiX, showing improved detection of crossing

fibers by BusineX. Panels 2 and 3 show color coded orientation estimates at the region near

right and left centrum semiovale, highlighted in the coronal view in uppermost and lowermost

panels, respectively. The background to the orientation estimates is the sum of anisotropic

volume fractions estimated by each method. The estimation is done from HR and LR datasets

under-sampled by a factor of 2 (100 diffusion directions).
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higher mean sum of volume fractions obtained from BusineX may correspond

to improved detection of crossing fibers.

Fig. 10 shows another comparison of the performance of BusineX with

that of RubiX, BedpostX, and CSD, showing improved parameter estimates

near SLF. We also analyzed the performance improvement quantitatively, by

counting the number of second and third fiber crossings in the white matter, as

well as in several specific ROIs. Fig. 11 shows the number of second and third

fiber crossings in the white matter, near the pons in the ROI from Fig. 9, in the

left/right SLF and in the left/right posterior corona radiata (PCR). It can be

noticed that, while RubiX and BedpostX tend to recover fewer second and third

fiber crossings as the under-sampling factor increases, BusineX performs equally

well even with only a quarter of the original diffusion gradients. Lastly we have

shown a map of the estimated mean diffusivity in Fig. 12. By comparison with

DTI, both BusineX and BedpostX provide diffusivity estimates with improved

contrast. Compared to BedpostX, the estimate from BusineX also appears to

be less noisy.

4. Discussion

4.1. Complexity of Fiber Patterns

The use of SBL in BusineX enhances the variance adaptation of fiber volume

fractions to the data, at each voxel and for each possible fiber orientation. This is

made possible by moderating the strength of priors through associated hyperpa-

rameters. In other words, the proposed framework performs relevance learning

by tuning the variance hyperparameters spatially (across voxels) and angularly

(across possible fiber orientations), which is the main novelty of our approach.

Contrary to earlier approaches in fiber parameter estimation, which utilizes a

fixed ARD weight for all voxels and fibers (Behrens et al., 2007; Sotiropoulos

et al., 2013), this variance adaption through relevance determination improves

adaption of the fiber parameters to the data. This is an important cause for
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Figure 9: Comparison between BusineX, RubiX, BedpostX and CSD showing improved de-

tection of fibers crossing the pons. Upper and middle panels show color coded orientation

estimates (ODF in the case of CSD) at the pons region highlighted in the coronal view in

lower left panel. The background is the sum of anisotropic volume fractions estimated by

BedpostX for all the methods. A comparison of the areas highlighted in the lower right panel

shows improved detection of CST fibers at the level of the pontine crossing tract. The estima-

tion from BedpostX and CSD is done from the full HR dataset with 200 diffusion directions.

The estimation from BusineX and RubiX is done from HR and LR datasets with 100 diffusion

directions per dataset. We use a total of 200 directions in all experiments to approximately

match the acquisition time (LR acquisitions can be done faster than HR). BedpostX and CSD

use only one dataset (HR), whereas BusineX and RubiX use two datasets (HR and LR) with

half of the diffusion measurements.
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Figure 10: Comparison between BusineX, RubiX, BedpostX, and CSD showing improved

detection of crossing fibers by BusineX. Upper panels show color coded orientation estimates in

the SLF region highlighted in the sagittal view in lower right panel. Lower left panel shows the

color coded ODF estimated using MRtrix. The background is the sum of anisotropic volume

fractions estimated by BedpostX for all the methods. A comparison of the areas highlighted

in the lower middle panel shows improved detection of association fibers through the SLF.

BusineX resolves the association fibers in both highlighted areas. RubiX and BedpostX do

not resolve all the fibers at the yellow area, and CSD does not resolve all the fibers at the

magneta area. The estimation from BedpostX and CSD is done from the full HR dataset

with 200 diffusion directions. The estimation from BusineX and RubiX is done from HR and

LR datasets with 100 diffusion directions per dataset. We use a total of 200 directions in all

experiments to approximately match the acquisition time (LR acquisitions can be done faster

than HR). BedpostX and CSD use only one dataset (HR), whereas BusineX and RubiX use

two datasets (HR and LR) with half of the diffusion measurements.
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Figure 11: Variation in number of second and third fiber crossings (with volume fractions

greater than 5%) in the white matter and in five selected ROIs.

Figure 12: Estimated mean diffusivity maps from BusineX (left), BedpostX (middle), and

DTI (right).
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the improved performance of BusineX, as illustrated in our simulation as well

as in-vivo results.

Another reason for the possible improvement in detection of crossing fibers

is the automatic tuning of fiber complexity using the hybrid Metropolis-within

reversible jump Gibbs sampler (Section 2.5), which helps fiber complexity adap-

tation by accepting or rejecting addition and deletion of fibers. Also, the rescal-

ing of volume fractions after every addition (BIRTH ) and deletion (DEATH )

move, as per the non-negativity and sum-to-one constraints, further facilitates

improvement in parameter estimation.

4.2. Local and Spatial Diffusion Models

The proposed algorithm is generic with respect to the local diffusion model

and the corresponding model parameters. The algorithm can be applied to

any model which can represent the data in dictionary form (Section 2.1) . We

chose the ball & stick model to approximate the diffusion signal, but it can

be replaced with more complex models such as a non-monoexponential decay

model to approximate multi-shell data (Jbabdi et al., 2012). In order to support

the flexibility of the proposed method, we used different models for synthetic

data simulation: A Tensor-Cylinder-Sphere model for the Camino dataset and

a Multi-Tensor model for the ISBI HARDI dataset.

To verify our spatial model, the assumption that the attenuation signal at an

LR voxel can be approximated by a weighted linear combination of attenuation

signals at corresponding overlapping HR voxels (6), we calculated the mean

and standard deviation of the root mean square error (RMSE) of estimated LR

attenuation signal from the actual LR attenuation data. The mean RMSE for

our in-vivo data is 0.067 with a standard deviation of 0.048, which justifies our

assumption (RMSE close to zero).

The HR local model (1) and the LR spatial partial volume model (6) (Sotiropou-

los et al., 2013) adapted in the proposed approach were recently modified to im-

prove the generalizability and performance (Sotiropoulos et al., 2016): the local

model is based on the multi-shell non-monoexponential decay (Jbabdi et al.,
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2012). Moreover the weighted sum of signal attenuations in the spatial partial

volume model is replaced with the ratio of weighted sums of diffusion-weighted

signals and non-diffusion-weighted signals. Improvement in estimation, partic-

ularly in volume fractions and diffusivities at tissue boundaries, is reported. In

our current implementation, we maintained the models as in RubiX (Sotiropou-

los et al., 2013) to make the comparisons fair and as our objective is to show

the benefits of modeling sparsity. These model changes can be easily adapted

to the presented framework.

The elements of our over-complete dictionary (5) created from the HR local

model are obtained from an icosahedral tessellation of the sphere. We use a 5th

order tessellation limiting the number of possible fiber orientations to 10242, as

a compromise between orientation accuracy and computational expense. The

worst-case discretization error due to this approximation is 1.18 degrees. The

order of tessellation can be increased for slightly improved orientation estimation

accuracy, at the expense of computational time.

4.3. Multiple Resolutions, Benefits for Data at Single Resolution

We have introduced a novel method for mapping white matter fiber param-

eters by combining information from data at high and low spatial resolutions

through a sparse linear unmixing framework. The algorithm works on any com-

bination of voxel sizes provided the LR voxel size is an integer multiple (e.g. 2x)

of the HR voxel size. The resolutions used in our experiments are 1.5 mm (HR)

and 3.0 mm (LR). The idea of combining multiple resolutions for noise regu-

larization was previously presented, discussing the specific aspects and issues

related to combining multiple resolutions (Sotiropoulos et al., 2013).

The fiber pattern in the HARDI reconstruction challenge dataset mainly

varies across two dimensions (in-plane) and has limited variation in the third

dimension (slices). Both our algorithm and RubiX might have benefitted from

this spatial consistency to some extent, as these algorithms use the same priors

for all HR voxels overlapped by an LR voxel (2×2×2 = 8 HR voxels overlapped

by one LR voxel). In spite of this, BusineX performs better than RubiX (11.13
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% in SR and 1.71 Degrees in AP) which is attributable to the volume fractions

posterior computation using the proposed sparse Bayesian learning algorithm.

It is straight-forward to apply the algorithm for inference from data at a

single resolution. The sparse Bayesian unmixing inference procedure detailed

in Section 2 remains the same. However the multiresolution inference as in

RubiX, detailed in Appendix A, and the partial volume model for LR data,

detailed in Section 2.2, need modifications (or deletions). The improvement in

accuracy due to the sparse formulation, as well as the benefit of lower number of

diffusion measurements may remain similar to the proposed approach, though

the inference from data at single resolution may affect the noise regularization

behavior of the algorithm (which is originally a benefit of fusing information

from LR data).

4.4. Current Limitations and Future Work

Estimation using the BusineX algorithm requires the acquisition of two scans

of the same subject at different spatial resolutions, which may lead to specific

challenges in the pre-processing steps. The combined inference from two scans

may be more sensitive to distortions (motion, B0 inhomogeneity, and eddy cur-

rent). These EPI distortions can be different for the two scans, as the spatial

resolutions are different. We corrected these distortions independently using

FSL (Jenkinson et al., 2012b; Andersson and Sotiropoulos, 2015) before align-

ing the two datasets, to minimize their effects in the inference.

The use of LR data in BusineX is to regularize and mitigate the noise in

HR data, by defining the priors and hyper-priors. To overcome the above-

mentioned limitations caused by two scans, we plan to explore the possibility of

learning these priors from an atlas which can be registered to the single resolu-

tion (HR) data. This would allow reconstruction and estimation by acquiring

images at a single spatial resolution. We also plan to develop a multi-shell

version of BusineX since such dMRI data has been shown to improve fiber ori-

entation mapping and tractography, for example, the multi-shell multi-tissue

CSD (Jeurissen et al., 2014).
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The current implementation of our algorithm is computationally intensive,

mainly due to the MCMC iterations. The algorithm takes about 8 seconds to

process one voxel with a CPU speed of 2.6 GHz. To speed-up the process-

ing, we parallelized the algorithm using OpenMP. It takes an average time of

250 milliseconds / voxel on a server with 32 processors. The computational

performance of the algorithm can be further improved using GPU/CUDA.

4.5. Concluding Remarks

Reducing acquisition time and maintaining SNR are two challenging goals in

dMRI acquisition. We proposed a sparse Bayesian algorithm, namely BusineX,

to achieve these goals simultaneously, extending and improving an existing mul-

tiresolution approach (RubiX) by efficiently introducing sparsity. BusineX is

useful for reconstruction of fiber parameters from accelerated dMRI data. The

results from simulation and in-vivo experiments have shown detection of more

number of second and third fiber crossings, with improved accuracy and lower

estimation uncertainty, for data under-sampled by a factor of up to four. The

near linear behavior of the orientation estimation error as well as the number of

detected fiber crossings with acceleration shows the potential of the proposed

approach for application in shortening the acquisition time of dMRI.

Our main motivation for this work is to demonstrate improvements in the

estimation of white matter parameters through explicit modeling of sparsity

using sparse Bayesian learning. As discussed above, the main limitation of

the proposed algorithm is the need to acquire data at two different spatial

resolutions. Several single resolution algorithms are available in the literature

(for example the algorithms we compared in Table 1), which can also achieve

good angular precision. Our future work will focus on extending BusineX for

fiber parameter estimation from single resolution multi-shell data.

Appendix A. Bayesian Inference

The application of Bayes rule with the complete Bayesian inference proce-

dure is briefed in this section. We modified the procedure in RubiX (Sotiropou-
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los et al., 2013) with the proposed sparse linear unmixing framework (Section

2),

p (Ω/Y ) ∝ p (Y/Ω) p (Ω) , (A.1)

where Y = (YLR, {Y mHR}) represents both HR and LR data, and

Ω = (fn, vn, d, S
0
HR, ηHR, S

0
LR, ηLR) is the set of all parameters to be estimated.

As the priors are conditional on hyperparameters C,

p (Ω, C/Y ) ∝ p (Y/Ω) p (Ω/C) p(C), (A.2)

where

p (Y/Ω) = p (YLR/Ω)

M∏
m=1

p (Y mHR/Ω) =

K∏
k=1

p
(
Y kLR/Ω

) M∏
m=1

K∏
k=1

p
(
Y mkHR/Ω

)
,

(A.3)

(A.4)

p (Ω/C) = p (S0LR) p (σLR) p (γ)
M∏
m=1

p (S0mHR) p (σmHR) p (dm/Cd) p (fm/CF )

N∏
n=1

p (vn/Cvn) ,

and

p(C) = p (Cd) p (CF )

N∏
n=1

p (Cvn) . (A.5)

The priors and hyper-priors (other than that for volume fractions, Equation

(7)) used are as detailed next.

Priors:

p (S0LR) = p (S0HR) = U (0,∞) ,

p (σLR) = 1/σLR, p (σHR) = 1/σHR,

p (γ) = U (0,∞) ,

p (d/Cd) = p (d/µd, σd) = N
(
µd, σ

2
d

)
,

p (vn/Cvn) = p (vn/µr, kr) = |sin(θ)|
R∑
r=1

c(kr)e
−kr(µTr vn)2 . (A.6)
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Hyper-priors:

p (µd) = Γ(a, c), p
(
σ2
d

)
= U (0,∞) ,

p (Cvn) =

R∏
r=1

p (kr) p(µr),

p (kr) = U (0,∞) , p (µr) = U
(
S2
)
. (A.7)

Appendix B. Acceptance Probability for BIRTH and DEATH Moves

Consider a BIRTH move from the state {f+(t), E
+(t)
n0 , n

(t)
0 } to a new state

{f+∗, E+∗
n∗0
, n∗0}. The acceptance probability ρb for BIRTH move is ρb = min{1, Ab},

where Ab is the acceptance ratio given by (B.1) (Green, 1995; Denison et al.,

2002),

Ab = Pp × Prp × Tp × |J(f∗)|, (B.1)

where

Pp =
p
(
f+∗, E+∗

n∗0
, n∗0

)
p
(
f+(t), E

+(t)
n0 , n

(t)
0

) , the ratio of the posterior probabilities,

Prp =
q
(
f (+t), E

+(t)
n0 |f+∗, E+∗

n∗0

)
q
(
f+∗, E+∗

n∗0
|f+(t), E

+(t)
n0

) , the ratio of proposal distributions,

Tp =
dR∗

bR(t)

, the ratio of transition probabilities, and

|J(f∗)|= the Jacobian of the transformation.

(B.2)

The Jacobian |J(f∗)| accounts for the change in scale when moving between

models of different dimensions. The ratio of transition probabilities is 1 in most

of the cases, when the birth and death moves are equally likely. The ratio of

the proposal distributions Prp is given by (Dobigeon et al., 2008)

Prp =
1

g
1,n

(t)
0

(f+∗)

nmax0 − n(t)
0

n
(t)
0 + 1

, (B.3)
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where ga,b(.) denotes the pdf of a Beta distribution Be(a, b). The posterior ratio

Pp can be written as the product of the likelihood ratio and prior probability

ratios of volume fractions, dictionary, and number of fibers (B.4),

Pp =
p (f∗, E∗, n∗0)

p
(
f (t), E(t), n

(t)
0

) =
p (y|f∗, E+∗, n∗0)

p
(
y|f (t), E+(t), n

(t)
0

)
× p (f∗|n∗0)

p
(
f (t)|n(t)

0

) × p (E+∗|n∗0)

p
(
E+(t)|n(t)

0

) × p (n∗0)

p
(
n

(t)
0

) . (B.4)

The prior ratio of volume fractions is given by (B.5)

p (f∗|n∗0)

p
(
f (t)|n(t)

0

) =

∏n∗0
n=1N (f+∗

n |0, 1/α+∗
n )∏n

(t)
0
n=1N (f

+(t)
n |0, 1/α+(t)

n )
=
(αn∗0

2π

) 1
2

e−
αn∗0

f2
n∗0

2 . (B.5)

The prior ratio of the dictionary is given by (B.6) (Denison et al., 2002)

p (E+∗|n∗0)

p
(
E+(t)|n(t)

0

) =
n

(t)
0 + 1

nmax0 − n(t)
0

. (B.6)

The prior associated to the number of fibers is uniform, and so the prior ratio

of number of fibers is 1.

Substituting the values of Pp, Prp, and Tp in B.1, the acceptance ratio Ab

is given by

Ab = e
−

 ‖yHR−E+∗
n∗0

f+∗‖2−‖yHR−E
+(t)
n0

f+(t)‖2

2


× dR∗

bR(t)

× 1

g
1,n

(t)
0

(f+∗)

×
(αn∗0

2π

) 1
2

e−
αn∗0

f2
n∗0

2 . (B.7)

The acceptance probability ρd for DEATH move is ρd = min{1, Ad}, where

Ad is the rejection ratio. The derivation and calculation of Ad is similar to

the calculation of Ab except that the ratio of transition probabilities Tp is bR∗
d
R(t)

(Denison et al., 2002) and prior ratio of volume fractions is

(
α
n
(t)
0

2π

) 1
2

e−
α
n
(t)
0

f2

n
(t)
0

2 .
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