269 research outputs found

    Initial states in integrable quantum field theory quenches from an integral equation hierarchy

    Get PDF
    We consider the problem of determining the initial state of integrable quantum field theory quenches in terms of the post-quench eigenstates. The corresponding overlaps are a fundamental input to most exact methods to treat integrable quantum quenches. We construct and examine an infinite integral equation hierarchy based on the form factor bootstrap, proposed earlier as a set of conditions deter- mining the overlaps. Using quenches of the mass and interaction in Sinh-Gordon theory as a concrete example, we present theoretical arguments that the state has the squeezed coherent form expected for integrable quenches, and supporting an Ansatz for the solution of the hierarchy. Moreover we also develop an iterative method to solve numerically the lowest equation of the hierarchy. The iterative solution along with extensive numerical checks performed using the next equation of the hierarchy provide a strong numerical evidence that the proposed Ansatz gives a very good approximation for the solution.Comment: 36 pages, pdflatex file, 11 pdf figures. v2: revised version, accepted for publicatio

    GEOMORPHIC CONSTRAINS ON THE EVOLUTION OF THE AGGITIS RIVER BASIN NORTHERN GREECE (A PRELIMINARY REPORT)

    Get PDF
    Στην παρούσα εργασία αναλύουμε την γεωμορφολογική εξέλιξη της κοιλάδας του Αγγίτη ποταμού και παρουσιάζουμε τον συσχετισμό των μορφολογικών χαρακτηριστικών από το σπήλαιο του Μααρά (Σπήλαιο πηγών Αγγίτη) με τις διάφορες γεωμορφές στην κοιλάδα του ποταμού. Παράλληλα, επιχειρούμε να θέσουμε ένα γενικό χρονολογικό πλαίσιο για την εξέλιξη της κοιλάδας. Για τον σκοπό αυτό μελετήσαμε το σπήλαιο και τις γεωμορφές στο εσωτερικό του ενώ παράλληλα μελετήθηκε και η επιφανειακή μορφολογία. Η τρισδιάστατη χαρτογράφηση του σπηλαίου έδειξε ότι η οροφή του σπηλαίου έχει κυματοειδές σχήμα ενώ το δάπεδό του παρουσιάζει μικρή κλίση και είναι καλυμμένο με κλαστικές αποθέσεις μεγάλου πάχους. Η γεωμορφολογική χαρτογράφηση έδειξε πως στο νότιο τμήμα της κοιλάδας υπάρχουν δύο windgaps. Αξιολογώντας τα αποτελέσματα καταλήγουμε στο συμπέρασμα ότι τέσσερα εξελεκτικά στάδια διαμόρφωσαν την κοιλάδα του Αγγίτη ποταμού κατά την περίοδο από το Νεογενές ως το Τεταρτογενές.In this paper we discuss the landscape evolution of the Aggitis River basin by correlating the morphological characteristics of the Maaras Cave (Aggitis River spring) with the main geomorphological features of the Aggitis fluvial valley. We combine the various morphological features that are hidden inside the Maaras Cave with the surface geomorphology of the river valley in order to trace the imprint of the different evolutionary stages on the landscape. Also, we provide a relative chronological framework for the evolution of the area. The 3D survey of the Maaras Cave shows that the roof of the cave is looping-like shaped in contrast to the floor of the cave that shows low slopes and holds thick clastic sediment deposits. Furthermore, the geomorphological mapping of the Aggitis River valley shows two prominent windgaps at the southern part of the basin that formed as the result of river capture. Our results suggest that the Aggitis River basin suffered four major evolutionary stages from the Neogene until the Quaternary

    Thermalization and temperature distribution in a driven ion chain

    Full text link
    We study thermalization and non-equilibrium dynamics in a dissipative quantum many-body system -- a chain of ions with two points of the chain driven by thermal bath under different temperature. Instead of a simple linear temperature gradient as one expects from the classical heat diffusion process, the temperature distribution in the ion chain shows surprisingly rich patterns, which depend on the ion coupling rate to the bath, the location of the driven ions, and the dissipation rates of the other ions in the chain. Through simulation of the temperature evolution, we show that these unusual temperature distribution patterns in the ion chain can be quantitatively tested in experiments within a realistic time scale.Comment: 5 pages, 5 figure

    Inhomogeneous quantum quenches in the sine-Gordon theory

    Get PDF
    We study inhomogeneous quantum quenches in the attractive regime of the sine-Gordon model. In our protocol, the system is prepared in an inhomogeneous initial state in finite volume by coupling the topological charge density operator to a Gaussian external field. After switching off the external field, the subsequent time evolution is governed by the homogeneous sine-Gordon Hamiltonian. Varying either the interaction strength of the sine-Gordon model or the amplitude of the external source field, an interesting transition is observed in the expectation value of the soliton density. This affects both the initial profile of the density and its time evolution and can be summarised as a steep transition between behaviours reminiscent of the Klein-Gordon, and the free massive Dirac fermion theory with initial external fields of high enough magnitude. The transition in the initial state is also displayed by the classical sine-Gordon theory and hence can be understood by semi-classical considerations in terms of the presence of small amplitude field configurations and the appearance of soliton excitations, which are naturally associated with bosonic and fermionic excitations on the quantum level, respectively. Features of the quantum dynamics are also consistent with this correspondence and comparing them to the classical evolution of the density profile reveals that quantum effects become markedly pronounced during the time evolution. These results suggest a crossover between the dominance of bosonic and fermionic degrees of freedom whose precise identification in terms of the fundamental particle excitations can be rather non-trivial. Nevertheless, their interplay is expected to influence the sine-Gordon dynamics in arbitrary inhomogeneous settings.Comment: 26+18 pages, 12+4 figure

    Microstructural characterization of dental zinc phosphate cements using combined small angle neutron scattering and microfocus X-ray computed tomography

    Get PDF
    Objective To characterize the microstructure of two zinc phosphate cement formulations in order to investigate the role of liquid/solid ratio and composition of powder component, on the developed porosity and, consequently, on compressive strength. Methods X-ray powder diffraction with the Rietveld method was used to study the phase composition of zinc oxide powder and cements. Powder component and cement microstructure were investigated with scanning electron microscopy. Small angle neutron scattering (SANS) and microfocus X-ray computed tomography (XmCT) were together employed to characterize porosity and microstructure of dental cements. Compressive strength tests were performed to evaluate their mechanical performance. Results The beneficial effects obtained by the addition of Al, Mg and B to modulate powder reactivity were mitigated by the crystallization of a Zn aluminate phase not involved in the cement setting reaction. Both cements showed spherical pores with a bimodal distribution at the micro/nano-scale. Pores, containing a low density gel-like phase, developed through segregation of liquid during setting. Increasing liquid/solid ratio from 0.378 to 0.571, increased both SANS and XmCT-derived specific surface area (by 56% and 22%, respectively), porosity (XmCT-derived porosity increased from 3.8% to 5.2%), the relative fraction of large pores ≥50 μm, decreased compressive strength from 50 ± 3 MPa to 39 ± 3 MPa, and favored microstructural and compositional inhomogeneities. Significance Explain aspects of powder design affecting the setting reaction and, in turn, cement performance, to help in optimizing cement formulation. The mechanism behind development of porosity and specific surface area explains mechanical performance, and processes such as erosion and fluoride release/uptake

    Non-equilibrium Dynamics of O(N) Nonlinear Sigma models: a Large-N approach

    Full text link
    We study the time evolution of the mass gap of the O(N) non-linear sigma model in 2+1 dimensions due to a time-dependent coupling in the large-NN limit. Using the Schwinger-Keldysh approach, we derive a set of equations at large NN which determine the time dependent gap in terms of the coupling. These equations lead to a criterion for the breakdown of adiabaticity for slow variation of the coupling leading to a Kibble-Zurek scaling law. We describe a self-consistent numerical procedure to solve these large-NN equations and provide explicit numerical solutions for a coupling which starts deep in the gapped phase at early times and approaches the zero temperature equilibrium critical point gcg_c in a linear fashion. We demonstrate that for such a protocol there is a value of the coupling g=gcdyn>gcg= g_c^{\rm dyn}> g_c where the gap function vanishes, possibly indicating a dynamical instability. We study the dependence of gcdyng_c^{\rm dyn} on both the rate of change of the coupling and the initial temperature. We also verify, by studying the evolution of the mass gap subsequent to a sudden change in gg, that the model does not display thermalization within a finite time interval t0t_0 and discuss the implications of this observation for its conjectured gravitational dual as a higher spin theory in AdS4AdS_4.Comment: 22 pages, 9 figures. Typos corrected, references rearranged and added.v3 : sections rearranged, abstract modified, comment about Kibble-Zurek scaling correcte

    Microstructural characterization of dental zinc phosphate cements using combined small angle neutron scattering and microfocus X-ray computed tomography.

    Get PDF
    Abstract Objective To characterize the microstructure of two zinc phosphate cement formulations in order to investigate the role of liquid/solid ratio and composition of powder component, on the developed porosity and, consequently, on compressive strength. Methods X-ray powder diffraction with the Rietveld method was used to study the phase composition of zinc oxide powder and cements. Powder component and cement microstructure were investigated with scanning electron microscopy. Small angle neutron scattering (SANS) and microfocus X-ray computed tomography (XmCT) were together employed to characterize porosity and microstructure of dental cements. Compressive strength tests were performed to evaluate their mechanical performance. Results The beneficial effects obtained by the addition of Al, Mg and B to modulate powder reactivity were mitigated by the crystallization of a Zn aluminate phase not involved in the cement setting reaction. Both cements showed spherical pores with a bimodal distribution at the micro/nano-scale. Pores, containing a low density gel-like phase, developed through segregation of liquid during setting. Increasing liquid/solid ratio from 0.378 to 0.571, increased both SANS and XmCT-derived specific surface area (by 56% and 22%, respectively), porosity (XmCT-derived porosity increased from 3.8% to 5.2%), the relative fraction of large pores ≥50 μm, decreased compressive strength from 50 ± 3 MPa to 39 ± 3 MPa, and favored microstructural and compositional inhomogeneities. Significance Explain aspects of powder design affecting the setting reaction and, in turn, cement performance, to help in optimizing cement formulation. The mechanism behind development of porosity and specific surface area explains mechanical performance, and processes such as erosion and fluoride release/uptake
    corecore