72 research outputs found

    Geographic Variation in Temperature Tolerance as an Indicator of Potential Population Responses to Climate Change

    Get PDF
    The temperature tolerances of individuals in geographically separated populations of a single species can be used as indicators of each population\u27s potential to persist or become extinct in response to climate change. We evaluated the population-level variation in temperature tolerance in populations of several marine invertebrate taxa, including bryozoans, tunicates, bivalves, and gastropods, separated by distances of \u3c 200 km to \u3e 5000 km. We then combined physiological thermotolerance data with current temperature data and climate change predictions to predict which of these populations may be most vulnerable to future changes. In a trans-continental comparison of four subtidal epibenthic species, we show that populations on the east coast of the United States, which experienced higher habitat temperatures than those on the west coast, had higher thermal tolerances but lived closer to individuals\u27 tolerance limits. Similarly, temperature tolerances varied between western and eastern Atlantic populations of the mussel Mytilus edulis; however, these differences only emerged after repeated exposures to high temperatures. Furthermore, the less thermotolerant M. edulis population in the western Atlantic was more susceptible to temperature increases, as evidenced by a recent range contraction. Thus, for both the subtidal epibenthic and intertidal mussel species, we identified the western Atlantic as a ‘hot spot’ of populations susceptible to climate change compared to those in the eastern Pacific and eastern Atlantic, respectively. Finally, because current tolerances are not the sole indicators of individuals\u27 abilities to cope with temperature increases, we also assessed the possibility for acclimatization to facilitate the persistence of populations via the buffering of temperature effects. We show that, for four populations of intertidal Littorina snail species in the northwest Atlantic, most populations were able to overcome geographic differences in temperature tolerance via acclimation. When acclimation capacity is low, the potential for “rescue” may depend on the particular species\u27 life-history strategy and dispersal ability. For example, although individuals from the coldest-adapted population of Littorina littorea were unable to acclimate as quickly as those from more southern populations, this species has a pelagic larval stage and, thus, the greatest dispersal potential of these littorines. Together, these studies highlight the importance of considering variation in temperature tolerance between populations within species to improve the forecasting of changes in the abundances and distributions of species in response to climate warming

    InvasiBES: Understanding and managing the impacts of Invasive alien species on Biodiversity and Ecosystem Services

    Get PDF
    Invasive Alien Species (IAS) are amongst the most significant drivers of species extinction and ecosystem degradation, causing negative impacts on ecosystem services and human well-being. InvasiBES, a project funded by BiodivERsA-Belmont Forum for 2019–2021, will use data and models across scales, habitats and species to understand and anticipate the multi-faceted impacts of IAS and to provide tools for their management. Using Alien Species Narratives as reference, we will design future intervention scenarios focused on prevention, control and eradication of IAS in Europe and the United States, through a participatory process bringing together the expertise of scientists and stakeholders. We will also adapt current impact assessment protocols to assess both the detrimental and beneficial impacts of IAS on biodiversity and ecosystem services. This information will then be combined with maps of the potential distribution of Invasive Species of Interest in Europe under current and future climate-change scenarios. Likewise, we will anticipate areas under risk of invasion by range-shifting plants of concern in the US. Finally, focusing on three local-scale studies that cover a range of habitats (freshwater, terrestrial and marine), invasive species (plants and animals) and ecosystem services (supporting, provisioning, regulating and cultural), we will use empirical field data to quantify the real-world impacts of IAS on biodiversity and ecosystem services and calculate indicators of ecosystem recovery after the invader is removed. Spatial planning tools (InVEST) will be used to evaluate the costs and benefits of species-specific intervention scenarios at the regional scale. Data, models and maps, developed throughout the project, will serve to build scenarios and models of biodiversity and ecosystem services that are relevant to underpin management of IAS at multiple scales

    Will extreme climatic events facilitate biological invasions?

    Get PDF
    Copyright © 2012 Ecological Society of AmericaExtreme climatic events (ECEs) – such as unusual heat waves, hurricanes, floods, and droughts – can dramatically affect ecological and evolutionary processes, and these events are projected to become more frequent and more intense with ongoing climate change. However, the implications of ECEs for biological invasions remain poorly understood. Using concepts and empirical evidence from invasion ecology, we identify mechanisms by which ECEs may influence the invasion process, from initial introduction through establishment and spread. We summarize how ECEs can enhance invasions by promoting the transport of propagules into new regions, by decreasing the resistance of native communities to establishment, and also sometimes by putting existing non-native species at a competitive disadvantage. Finally, we outline priority research areas and management approaches for anticipating future risks of unwanted invasions following ECEs. Given predicted increases in both ECE occurrence and rates of species introductions around the globe during the coming decades, there is an urgent need to understand how these two processes interact to affect ecosystem composition and functioning.National Science Foundatio

    Integrated Assessment of Biological Invasions

    Get PDF
    As the main witnesses of the ecological and economic impacts of invasions on ecosystems around the world, ecologists seek to provide the relevant science that informs managers about the potential for invasion of specific organisms in their region(s) of interest. Yet, the assorted literature that could inform such forecasts is rarely integrated to do so, and further, the diverse nature of the data available complicates synthesis and quantitative prediction. Here we present a set of analytical tools for synthesizing different levels of distributional and/or demographic data to produce meaningful assessments of invasion potential that can guide management at multiple phases of ongoing invasions, from dispersal to colonization to proliferation. We illustrate the utility of data-synthesis and data-model assimilation approaches with case studies of three well-known invasive species—a vine, a marine mussel, and a freshwater crayfish—under current and projected future climatic conditions. Results from the integrated assessments reflect the complexity of the invasion process and show that the most relevant climatic variables can have contrasting effects or operate at different intensities across habitat types. As a consequence, for two of the study species climate trends will increase the likelihood of invasion in some habitats and decrease it in others. Our results identified and quantified both bottlenecks and windows of opportunity for invasion, mainly related to the role of human uses of the landscape or to disruption of the flow of resources. The approach we describe has a high potential to enhance model realism, explanatory insight, and predictive capability, generating information that can inform management decisions and optimize phase-specific prevention and control efforts for a wide range of biological invasions

    Will Extreme Climatic Events Facilitate Biological Invasions?

    Get PDF
    Extreme climatic events (ECEs) – such as unusual heat waves, hurricanes, floods, and droughts – can dramatically affect ecological and evolutionary processes, and these events are projected to become more frequent and more intense with ongoing climate change. However, the implications of ECEs for biological invasions remain poorly understood. Using concepts and empirical evidence from invasion ecology, we identify mechanisms by which ECEs may influence the invasion process, from initial introduction through establishment and spread. We summarize how ECEs can enhance invasions by promoting the transport of propagules into new regions, by decreasing the resistance of native communities to establishment, and also sometimes by putting existing non-native species at a competitive disadvantage. Finally, we outline priority research areas and management approaches for anticipating future risks of unwanted invasions following ECEs. Given predicted increases in both ECE occurrence and rates of species introductions around the globe during the coming decades, there is an urgent need to understand how these two processes interact to affect ecosystem composition and functioning
    corecore