1,011 research outputs found

    Combined ND techniques for structural assessment: the case of historic Nepali constructions after the 2015 Gorkha earthquake

    Get PDF
    Combined non-destructive in situ techniques—namely sonic tests and ambient vibration measurements—are applied on two Nepali Pagoda temples damaged by the 2015 Gorkha earthquake, providing the dynamic elastic modulus of masonry and the buildings' frequencie

    cardio ankle vascular index is associated with diabetic retinopathy in younger than 70 years patients with type 2 diabetes mellitus

    Get PDF
    Abstract Aims This study aimed to investigate the relationship between cardio-ankle vascular index (CAVI) and diabetic retinopathy (DR) in Caucasian patients with type 2 Diabetes Mellitus (T2DM). Methods This was a cross-sectional study of 299 T2DM patients admitted to Endocrine Unit of Foggia. DR was diagnosed using the International Clinical Disease Severity Scale of American Academy of Ophthalmology. The VaSera VS-1500N was used to measure CAVI. Because age is the most powerful determinant of arterial stiffness and affects the progression of DR, we divided the whole sample into two subgroups: above (older) and below (younger) 70 years. Results The mean age of patients was 60.4 ± 12.6 years and the mean CAVI value was 8.6 ± 1.7. In the whole population DR was diagnosed in 74 (24.7%) patients. CAVI value was clearly higher in patients with DR (9.5 ± 1.6) than in those without (8.7 ± 1.7) ( P =0.001) although this difference was not any more significant when adjusted by age and gender (P=0.067). In the multivariate model taking into account several possible confounders, the correlation between DR and CAVI remained significant only in younger subjects. In the same subgroup we found a significant association between the stages of DR and CAVI (p=0.019 adjusted by age and gender). Conclusions This study shows that CAVI is significantly higher in younger patients with DR than in those without, with a relationship between the stages of DR and CAVI in the same subgroup. Physicians should pay attention to sub-clinical macroangiopathy in younger T2DM patients who have DR

    Hysteroscopic Removal of Intrauterine Device in Pregnancy: A Scoping Review to Guide Personalized Care

    Get PDF
    Background and objectives: Pregnancies that occur with an intrauterine device (IUD) in situ are at increased risk for developing severe conditions which may affect the fetus and the mother. The incidence of such adverse consequences significantly drops after device removal. A scoping review of the literature was performed to highlight the risks, benefits, and outcomes of hysteroscopic removal of intrauterine devices in early pregnancy. Materials and Methods: PubMed, Scopus, and Web of Science were searched. The review included all reports from 1990 to October 2022. The research strategy adopted included different combinations of the following terms: (“hysteroscopy”) AND (“pregnancy”) AND (“intrauterine device” or “IUD”) AND (“intrauterine system” or “IUS”). A scoping review of the hysteroscopic removal of IUDs during pregnancy was performed. All studies identified were listed by citation, title, authors, and abstract. Duplicates were identified by an independent manual screening performed by two researchers and then removed. For the eligibility process, two authors independently screened the titles and abstracts of all non-duplicated papers and excluded those not pertinent to the topic. Results: PRISMA guidelines were followed. Nine manuscripts were detected, accounting for 153 patients. Most IUD removals occurred during the first trimester of pregnancy. Most of the time, the procedure was safe and without consequences. Conclusions: This review highlights the safety and efficacy of operative hysteroscopy as a method of IUD removal in early pregnancy. We recommend using a 3 to 5 mm hysteroscope, avoiding cervical dilation, and maintaining low infusion pressure during the procedure to avoid potential damage to the gestational sac and IUD fragment displacement. Heating the distension media to 30 ◦C should be considered

    Combined microcomputed tomography, biomechanical and histomorphometric analysis of the peri-implant bone: A pilot study in minipig model

    Get PDF
    Objectives To present a practical approach that combines biomechanical tests, microcomputed tomography (ÎĽCT) and histomorphometry, providing quantitative results on bone structure and mechanical properties in a minipig model, in order to investigate the specific response to an innovative dental biomaterial. Methods Titanium implants with innovative three-dimensional scaffolds were inserted in the tibias of 4 minipigs. Primary stability and osseointegration were investigated by means of insertion torque (IT) values, resonance frequency analysis (RFA), bone-to-implant contact (BIC), bone mineral density (BMD) and stereological measures of trabecular bone. Results A significant positive correlation was found between IT and RFA (r = 0.980, p = 0.0001). BMD at the implant sites was 18% less than the reference values (p = 0.0156). Peri-implant Tb.Th was 50% higher, while Tb.N was 50% lower than the reference zone (p < 0.003) and they were negatively correlated (r = -0.897, p = 0.006). Significance ÎĽCT increases evaluation throughput and offers the possibility for qualitative three-dimensional recording of the bone-implant system as well as for non-destructive evaluation of bone architecture and mineral density, in combination with conventional analysis methods. The proposed multimodal approach allows to improve accuracy and reproducibility for peri-implant bone measurements and could support future investigations

    Deep ensemble learning and transfer learning methods for classification of senescent cells from nonlinear optical microscopy images

    Get PDF
    The success of chemotherapy and radiotherapy anti-cancer treatments can result in tumor suppression or senescence induction. Senescence was previously considered a favorable therapeutic outcome, until recent advancements in oncology research evidenced senescence as one of the culprits of cancer recurrence. Its detection requires multiple assays, and nonlinear optical (NLO) microscopy provides a solution for fast, non-invasive, and label-free detection of therapy-induced senescent cells. Here, we develop several deep learning architectures to perform binary classification between senescent and proliferating human cancer cells using NLO microscopy images and we compare their performances. As a result of our work, we demonstrate that the most performing approach is the one based on an ensemble classifier, that uses seven different pre-trained classification networks, taken from literature, with the addition of fully connected layers on top of their architectures. This approach achieves a classification accuracy of over 90%, showing the possibility of building an automatic, unbiased senescent cells image classifier starting from multimodal NLO microscopy data. Our results open the way to a deeper investigation of senescence classification via deep learning techniques with a potential application in clinical diagnosis

    Reticulocyte Hemoglobin Content Helps Avoid Iron Overload in Hemodialysis Patients: A Retrospective Observational Study

    Get PDF
    Anemia in patients suffering from end-stage renal failure is currently treated with Erythropoiesis-Stimulating Agents (ESA). This treatment needs sufficient iron supplementation to avoid an inadequate dosage of ESA. Nowadays modern analytical instruments allow to accurately calculate the content of Hemoglobin (Hb) in reticulocytes (CHr), that can be used as a guide for prescribing patients with the appropriate amount of iron

    Three-axial Fiber Bragg Grating Strain Sensor for Volcano Monitoring

    Get PDF
    Fiber optic and FBGs sensors have attained a large diffusion in the last years as cost-effective monitoring and diagnostic devices in civil engineering. However, in spite of their potential impact, these instruments have found very limited application in geophysics. In order to study earthquakes and volcanoes, the measurement of crustal deformation is of crucial importance. Stress and strain behaviour is among the best indicators of changes in the activity of volcanoes .. Deep bore-hole dilatometers and strainmeters have been employed for volcano monitoring. These instruments are very sensitive and reliable, but are not cost-effective and their installation requires a large effort. Fiber optic based devices offer low cost, small size, wide frequency band, easier deployment and even the possibility of creating a local network with several sensors linked in an array. We present the realization, installation and first results of a shallow-borehole (8,5 meters depth) three-axial Fiber Bragg Grating (FBG) strain sensor prototype. This sensor has been developed in the framework of the MED-SUV project and installed on Etna volcano, in the facilities of the Serra La Nave astrophysical observatory. The installation siteis about 7 Km South-West of the summit craters, at an elevation of about 1740 m. The main goal of our work is the realization of a three-axial device having a high resolution and accuracy in static and dynamic strain measurements, with special attention to the trade-off among resolution, cost and power consumption. The sensor structure and its read-out system are innovative and offer practical advantages in comparison with traditional strain meters. Here we present data collected during the first five months of operation. In particular, the very clear signals recorded in the occurrence of the Central Italy seismic event of October 30th demonstrate the performances of our device.PublishedWien7TM. Sviluppo e Trasferimento Tecnologic
    • …
    corecore