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The success of chemotherapy and radiotherapy anti-cancer treatments can result
in tumor suppression or senescence induction. Senescence was previously
considered a favorable therapeutic outcome, until recent advancements in
oncology research evidenced senescence as one of the culprits of cancer
recurrence. Its detection requires multiple assays, and nonlinear optical (NLO)
microscopy provides a solution for fast, non-invasive, and label-free detection of
therapy-induced senescent cells. Here, we develop several deep learning
architectures to perform binary classification between senescent and
proliferating human cancer cells using NLO microscopy images and we
compare their performances. As a result of our work, we demonstrate that the
most performing approach is the one based on an ensemble classifier, that uses
seven different pre-trained classification networks, taken from literature, with the
addition of fully connected layers on top of their architectures. This approach
achieves a classification accuracy of over 90%, showing the possibility of building
an automatic, unbiased senescent cells image classifier starting from multimodal
NLO microscopy data. Our results open the way to a deeper investigation of
senescence classification via deep learning techniques with a potential application
in clinical diagnosis.
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1 Introduction

Cancer is a complex and heterogeneous disease characterized by uncontrolled cell
growth, invasion, andmetastasis. While great strides have beenmade in cancer diagnosis and
treatment, recurrence remains a major concern (Sempokuya et al., 2019). One emerging and
critical area of research is the study of therapy-induced senescence (TIS) in cancer cells. TIS
is a state of permanent growth arrest induced by various cancer treatments, including
chemotherapy and radiotherapy. Nonetheless, TIS cells maintain metabolic activity and can
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contribute to disease recurrence through various mechanisms. In
fact, senescence does not only affect the events inside the cell but has
also the potential to affect its surrounding micro-environment.
Senescent cells can communicate with neighboring cells by
secreting growth factors and inflammatory cytokines, which can
alter the behavior of nearby non-senescent cells promoting cancer
development, with detrimental effects on the health of the organism
(Kahlem et al., 2004). Therefore, it is essential to accurately identify
TIS cells to prevent cancer recurrence. Cellular senescence manifests
itself in response to cellular stressors as a collection of heterogeneous
but overlapping phenotypes. As such, there is no marker which can
identify it with absolute specificity, so that multiple, consecutive
assays are usually required (Gorgoulis et al., 2019). Currently, the
gold standard for detecting TIS cells relies on laborious and time-
consuming techniques such as senescence-associated beta-
galactosidase (SA-β-Gal) staining, gene expression and
morphology analysis (Gorgoulis et al., 2019).

In this context, noninvasive, quantitative, label-free optical
techniques could offer a desirable alternative. As an example, the
Jones group studied the autofluorescence emission from
endogenous lipopigments of replicative senescent cells using flow
cytometry methods (Zhai et al., 2021). The results showed that
replicative senescent cells yielded a higher fluorescence signal with
respect to normal human mesenchymal stem cells. However,
fluorescence signals can sometimes be nonspecific and usually
require exogenous staining with fluorophores that can affect the
viability of biological samples. Furthermore, they often require
complex preparation treatments to ensure proper binding with
their biological target, leading to toxic results over time (Liu
et al., 1999). Finally, excitation using short wavelengths can
induce photobleaching of fluorophores and damage to the
sample, e.g., through the generation of reactive oxygen species,
and limit the penetration depth in thick samples.

A solution comes from Raman scattering microscopy, a
powerful imaging technique that provides information about the
molecular composition of biological samples in a label-free and
noninvasive way. The technique is based on the inelastic scattering
of photons by molecules, which generates a unique vibrational
spactrum that is characteristic of the molecular structure. Raman
scattering microscopy can be used to study a wide range of biological
samples, including cells, tissues, and biomaterials, and can provide
valuable insights into their chemical composition, molecular
structure, and biochemical processes. In prior studies, Eberhardt
et al. (2017), Bai et al. (2015) utilized spontaneous Raman to identify
senescence-associated biomolecular changes in senescent human
fibroblasts and mesenchymal stem cells, respectively. Specifically,
they observed decreased levels of nucleic acids and proteins, and
increased levels of lipids, and discovered that the ratio of Raman
peaks associated with protein vibrations could serve as a marker for
the senescent phenotype. However, these studies focused on
replicative senescence and did not investigate the critical
phenotype of TIS, which is crucial for understanding the risk of
cancer recurrence and resistance to treatment. To address this,
Mariani et al. (2010) studied TIS induced by oxytetracycline
treatment in MCF-7/NeuT human breast cancer cells with
spontaneous Raman microscopy. The group observed spectral
differences in the nuclei of senescent cells, suggesting nuclear
membrane instability as a key feature of TIS. On a different note,

Oh et al. (2022) used quantitative Stimulated Raman Scattering
(SRS) to investigate cytoplasmic concentration changes during
cellular senescence. Compared to spontaneous Raman, SRS
coherent signal generation greatly amplifies the Raman scattering
processes, allowing for faster imaging speed, higher chemical
sensitivity, and finer spatial resolution (Cheng et al., 2022).
Moreover, SRS microscopy possesses intrinsic 3D optical
sectioning capabilities and can be seamlessly coupled with other
Nonlinear Optical (NLO) modalities, such as Two-Photon Excited
Fluorescence (TPEF), also requiring ultrashort laser pulses in the red
or near-infrared spectral range, for multimodal imaging (Lu et al.,
2015; Talone et al., 2022). The study by Oh et al. associates lipids and
proteins upregulation to the TIS cells phenotype, but lacks any time
resolution, since they investigated only one time point and no
measurements were conducted during the first hours after
treatment, at the onset of senescence. In our previous work
(Bresci et al., 2023), we successfully identified quantitative
markers of TIS in vitro in human hepatic cancer cells, treated
with a chemotherapeutic drug, via label-free multimodal NLO
microscopy combining SRS and TPEF. We studied the onset and
progression of TIS at consecutive time-points, up to 7-days post
treatment, finding quantitative metabolic and biochemical
indicators. We observed that these markers can spot early-stage
senescence induction as early as 24 h after therapy in unperturbed
culture conditions, making label-free NLOmicroscopy a perspective
candidate for TIS detection in clinical practice.

However, all the presented research works share a common
feature, that is, they rely solely on statistical evaluations, which can
be biased by the choice of the model and provide only a narrow
picture of the multifaceted TIS phenotype. Traditional statistical
methods have low uncertainty tolerance and rely on a priori
assumptions, such as the type of error distribution and the
additivity of the parameters within the linear predictor, which are
often not met in clinical practice and may be overlooked in the
scientific literature. In contrast, deep learning techniques are free
from such assumptions and offer greater flexibility. Deep learning
methods can take advantage of all the available information in a
dataset, providing a more comprehensive understanding of the
underlying patterns and relationships (Rajula et al., 2020).

In recent years, deep learning has been proven as an extremely
useful tool for image classification in the biomedical field. In the
context of deep learning, the classification task is usually performed
using an Artificial Neural Network (ANN) in a supervised learning
approach (Alzubaidi et al., 2021). ANN are composed of layers of
artificial neurons connected with each other and, starting from the
data in input, they can predict at the output the class to which the
input belongs. Layers which are not connected to the input or output
of the ANN are called hidden layers. Based on the number of hidden
layers, ANNs can be classified either as shallow (one or two hidden
layers) or deep (more than two hidden layers). For image
classification, due to the complexity of the input data, in 1998
Lecun et al. (1998) proposed a new class of ANN, the so-called
Convolutional Neural Network (CNN), which can perform image
classification using far less parameters than a usual ANN, reducing
the training time and improving the performances (Vernuccio et al.,
2022).

ANNs based on CNNs have shown great potential in cancer
diagnosis, including the identification of cancer subtypes,
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prediction of treatment response, and detection of metastatic
lesions. Recent studies have demonstrated the potential of deep
learning in the diagnosis of various types of cancer, including
breast cancer, lung cancer, and skin cancer (Dildar et al., 2021;
Mridha et al., 2021; Wang, 2022). For example, CNN-trained
systems have been developed to accurately detect breast cancer
masses from mammography images, with performance
comparable to that of expert pathologists (Kooi et al., 2017).
Similarly, deep learning models have been used to classify skin
lesions and predict melanoma with high accuracy, potentially
allowing for earlier detection and improved patient outcomes
(Mahbod et al., 2019).

However, there are still several obstacles that need to be
addressed in the development and application of deep-learning
methods for cancer diagnosis. One of the major challenges is the
availability of large, high-quality datasets that are representative
of the diverse range of cancer cell types and stages. Additionally,
there is a need to develop interpretable models that can provide
insight into the features and biomarkers that contribute to
accurate cancer classification (Teo et al., 2021). While deep-
learning models can achieve high levels of accuracy in cancer
diagnosis, they are often considered “black boxes” in that it can
be difficult to understand how the model arrived at its
predictions, namely which are the principal biomarkers that
stimulate the neural network towards successful classification.
This lack of interpretability can be a barrier to clinical adoption,
as physicians may be hesitant to rely on a model whose inner
workings they do not fully understand. As such, there is a need
to develop methods that can balance the need for accuracy with
the need for interpretability.

Here, we present an innovative deep-learning method for
the classification of TIS cancer cells that addresses some of these
challenges. Our approach utilizes a novel neural-network
architecture and leverages on the knowledge learned from
CNN pre-trained models (Transfer Learning) and on the
combination of multiple algorithms (Ensemble Learning)
which allows us to obtain relevant performances in the
discrimination of TIS cancer cells also on very limited
datasets. The dataset consists of 224 three-channel images
collected in three different label-free modalities (SRS, TPEF
and Transmission) using our multimodal NLO microscope.
This approach achieves a classification accuracy of over 90%.
We also incorporate the Gradient-weighted Class Activation
Mapping (Grad-CAM) visualization approach (Selvaraju et al.,
2017) as an interpretability technique to provide insight into the
features that contribute to accurate classification. We
demonstrate the effectiveness of our system on an
experimental dataset of human hepatic cancer cells, in which
the TIS phenotype is induced both via drug-based and
radiotherapy treatments (Ghislanzoni et al., 2023). We
propose a comparison of our novel, unbiased, and automatic
approach for the classification of TIS cancer cells over tumoral
cells with other competing deep learning architecture
specifically developed for this work. We show that the
architecture based on both Transfer Learning and Ensemble
Learning achieves the best overall performances. To the best of
our knowledge, this is the first time that Transfer Learning and
Ensemble Learning methods are applied on a dataset of NLO

images. Our combined experimental-analytical approach thus
holds promise for improving the accuracy and efficiency of TIS
detection, ultimately reducing the risk of cancer recurrence
using multimodal information processed in a deep-learning
framework. It opens the way to a deeper investigation of
senescence classification via deep-learning, potentially
leading to new insights into the study of senescence as a

FIGURE 1
Overview of the multi-channel dataset of HepG2 cells for
different treatment and culture conditions. One row represents a
typical set of 3 co-registered images that are fed as input to the neural
network. Each image is 250 × 300 pixels2, acquired from a field of
view of 88 × 105 μm2 in size. The scalebar is 20 µm.
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cause of cancer relapse. We also foster a further study of this
tool as a clinical instrument for senescence identification.

2 Materials and methods

2.1 Input images and dataset

Part of the data set was collected in our previous work (Bresci
et al., 2023). The new cancer cells populations used for this study
were grown in the same conditions and treated to display TIS
features using either deferoxamine-based (DFO, MERK) or
radiotherapy treatments. Overall, we employ 20 untreated,
25 DFO-treated and 15 irradiated culture plates. Figure 1
presents an extract of the different cell phenotypes used for this
study. The new multimodal images are acquired on the same NLO
microscope with unchanged experimental protocol and
instrumentation, and their ground-truth annotations are assigned
by visual inspection. Images are labeled as “Senescent” if they exhibit
TIS features, or otherwise labeled as “Control”, based on the markers
established previously via NLO microscopy (Bresci et al., 2023).

For the training and evaluation of the neural networks, we acquire
a dataset of 224 three-channel images. Out of this dataset, 170 images
are used as input for the training of the networks (training dataset),
while the remaining 54 images are used for the evaluation of the
networks performances and not used in the training process (test
dataset). For the training dataset, among the 170 images, 95 are images
coming fromTIS cells and the remaining 65 are from untreated cancer
cells (control cells). For the test dataset, 30 images come from TIS cells
and 24 from control ones. A validation dataset is also randomly
extracted from the training dataset and used in the training process, to
stop it before overfitting. The validation dataset is constituted of
43 images, divided into 24 senescent images and 19 control ones.
Every image is composed of three channels, two NLO channels (SRS,
TPEF), providing chemical and metabolic information, and the
optical transmission channel, providing morphological information.
The size of every image is 250 × 300 pixel2, covering a field of view of
88 × 105 μm2, corresponding to a pixel size of 350 × 350 nm2. The
sampling conditions were determined based on the trade-off between
the minimum spatial resolution needed to resolve the smallest
biological features of interest and the maximum permitted optical
power in order not to alter the sample conditions. Before starting our
experimental campaign, we tested different measurement parameters
to find the most optimal one for our system. We observed that
increasing the sampling rate inevitably caused quick culture medium
depletion, significantly reducing the total number of images that could
be extracted from one sample, which is a critical feature to create a
solid microscopy dataset for deep learning classifiers. In order not to
distort the physically acquired signals, before using these images as
input of the networks, we only employ a shallow pre-processing
step. Therefore, the input images undergo a step of outliers removal
using percentile metrics (Liao, Li, and Brooks, 2016) and background
noise suppression. Then, the signals from the three channels are
normalized and scaled between 0 and 255 to ensure that the pixel
values fall within boundaries usable by the pre-trained networks.

Even if the overall dataset is rather large from an experimental
point of view (224 fields of view, composed of 250 × 300 spatial and
three spectral pixels for a total of more than 50 M values and more

than 1000 cells for the whole dataset), this is still fairly small to train
a deep-learning network. To solve this issue, we increase the dataset
size, applying a data-augmentation step before the networks
(Shorten and Khoshgoftaar, 2019). In this step we apply random
transformations to the images which do not modify their
informative content. These transformations are random rotations,
translations, and flipping of the images, where we use a filling mode
with zero to handle that after these transformations there are portion
of the 250 × 300 pixels images where the original image is not
present. We avoid employing cropping and stretching
transformations, because these could introduce some unnatural
deformations in the positions and concentrations of lipids and
mitochondria which could lead to a poor generalization ability of
the algorithms. Using the image augmentation step, we obtain
11 transformed images from every single image, bringing our
final training dataset to 2040 three-channel images. The image
augmentation step is used only to augment the training dataset
and not the test one, in order not to introduce data leakage in the
evaluation.

2.2 Experimental label-free NLO data from
cell cultures

We employ a lab-built multimodal NLO scanning microscope to
collect morphological, metabolic, and chemical information from
HepG2 cells. The microscope has been described in detail in (Crisafi
et al., 2018). Briefly, our system is based on a multi-branch Erbium-
doped amplified fiber laser that yields a pump beam at 780 nm and a
Stokes beam, tunable in the range between 950 and 1050 nm, with
40 MHz repetition rate. The pump beam is modulated with an
acousto-optic modulator at 1 MHz. An in-line balanced detection
scheme was employed for the SRS measurements, based on what is
described in Crisafi et al. The temporal overlap of the two trains of
pulses is achieved by operating a manual delay line, positioned on
the path of the Stokes beam. The two beams are spatially combined
with a dichroic mirror and sent into our homebuilt vertical
microscope. The beams are focused via a water-immersion 100X
1.25NA 0.25 mmworking distance (WD) objective (C-Apochromat,
Carl Zeiss, Germany) and collected by an oil-immersion 40X
1.30NA 0.19 mm WD (CFI Super Fluor, Nikon, Japan) objective.
The average laser powers were kept constant on the sample plane at
7.5 mW for the pump and 0.5 mW for the Stokes for all
measurements. The Stokes power is limited by the laser source
and by the in-line balanced detection scheme, which is fundamental
to achieve almost shot-noise-limited performances. Several
nonlinear processes can stem from synchronized dual-beam
excitation, such as SRS and TPEF. Multispectral detection was
performed via a photomultiplier, for the TPEF modality, and a
balanced photodiode, serving both for the SRS modality and
transmission light modality, on the same field of view. Following
two-photon excitation via the 780 nm pump beam, fluorescence
signal was epi-detected in the 400–600 nm range using a short-pass
filter (FESH0600, Thorlabs), to cover the complete emission spectra
of Flavin Adenine Dinucleotide (FAD) and Nicotinamide Adenine
Dinucleotide (NADH). These are important coenzymes which act as
electron acceptor and donor, respectively, in key metabolic
pathways, such as glycolysis, Krebs cycle, and oxidative
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phosphorylation (Heikal, 2010). Compared to their reduced
(FADH2) and oxidized (NAD+) forms, these molecules are also
autofluorescent and represent excellent endogenous sources of
optical contrast, offering a way to monitor subtle changes in
cellular metabolism (Georgakoudi et al., 2012). Single-channel
SRS was detected at 2850 cm−1, corresponding to the strong CH2

stretching mode of lipids. SRS microscopy at this Raman mode has
been proven to provide reliable measurements of lipid droplets in
different cell lines, allowing both for visualizing their distribution
and quantifying their cellular concentration in a non-invasive, label-
free fashion (Gupta et al., 2019). Therefore, the acquisition of these
three imaging channels is particularly convenient and efficient for
our multimodal NLO system, allowing us to seamlessly obtain a co-
registered three-channel image in a single measurement. At the same
time, these channels comprise informative but not strongly
correlated features, which is extremely advantageous to improve
the training process and achieve the best classification performances
of a neural network (Toloşi and Lengauer, 2011).

2.3 Cell culture, treatment, and sample
preparation

HepG2 cells were acquired from the American Type Culture
Collection (ATCC,Manassas, VA, United States; ATCCnumber: HB-
8065), and kept in Dulbecco’s modified Eagle’s medium (DMEM)
(Gibco), supplementedwith 10% fetal bovine serum (FBS) at 37°C and
5% CO2. For NLO analysis, cells were seeded on quartz slides
measuring 22 mm × 22mm × 0.17 mm (Fuzhou Devotop
Photonics, China). Each quartz slide was placed in a Ø 6 cm petri
dish; for each sample, 320.000 HepG2 cells were suspended in a 1 ml
drop of culture medium and plated on a quartz slide inside the petri
dish. Then, the sample was placed in an incubator for 2 h. After that,
4 ml of culture medium was added to the petri dish. This step was for
cells to only attach and grow on the quartz slides. Before being
introduced in the microscopy unit, each square quartz slide was
flipped over and sealed on top of a second 25 mm × 50mm ×
0.17 mm quartz slide. TIS features were promoted using either
drug-based or radiotherapy treatments. For the former, DFO was
employed, diluted in distilled water, reaching a concentration of
100 µM in the culture medium. 24 h after seeding, DFO was
introduced in the culture media, and cells were cultured for 12, 24,
72 h, or 7 days. At the end point of treatment, cells were fixed in 4%
PFA for 10 min and then put into storage at −4°C. Cells fixed
immediately following the administration of DFO are referred to
by the temporal control of 0 h. For radiotherapy, 48 h after plating,
cells were irradiated at 10 Gy released with gamma-rays from 137

55 Cs
sources of IBL147 biological irradiator (0.65 Gy = min) and
maintained at 37°C and 5% CO2. Fresh culture media was added
every 96 h. At the end point (5, 10, or 15 days after irradiation), cells
were fixed in 4% PFA for 10 min and stored at −4°C.

2.4 Model architectures and training

For the classification of cells in untreated tumoral (control) or
senescent cells, we first design a CNN classifier from scratch. Our
network consists of three convolutional layers whose number of

filters are respectively 6, 12, and 24 and with a 3 × 3 kernel size. The
aim of the kernel in a CNN is to extract features from the input
image by detecting specific patterns such as edges, corners, and other
simple shapes (Ajit et al., 2020). In between two consecutive
convolutional layers, a 2D max pooling layer is interposed, to
reduce the size of the 2D input array by taking the maximum
value within a defined window (Zafar et al., 2022). After the last
convolutional layer, a global max pooling and a dropout layer are
employed (Zafar et al., 2022) (Srivastava et al., 2014). The
classification task is then performed using two fully connected
layers with respectively 4 neurons, with a ReLu activation
function (Fukushima, 1975), and 1 neuron, with a sigmoid
activation function (Narayan, 1997). Figure 2A shows all the
layers used for building the neural network from scratch and
their corresponding sizes.

Besides that, since we dispose of a small number of instances for
the dataset, we also develop architectures based on the Transfer
Learning (TL) approach. TL is a method that uses complex CNNs
that were pre-trained on a large, labelled image database (such as
ImageNet (Deng et al., 2009)) to perform classification tasks (Weiss
et al., 2016). This method is particularly convenient in cases in which
the available datasets are constituted by a reduced number of
instances. Indeed, TL takes advantage of the knowledge acquired
in the pre-training of a complex neural network on an exceptionally
large dataset to perform classification on a different, previously
unseen dataset, after a fine tuning to adapt the learned parameters to
the specific network to fulfill the task. This is possible because the
lower-level features learned from pre-training on large datasets (like
edges, geometric shapes, etc.) are often generalizable to a wide range
of tasks, allowing the model to extract relevant features from the new
data with less training data. Some pre-trained neural networks are
available open source. In this work, we employ the following seven
different pre-trained open-source networks: Inception V3 (Szegedy
et al., 2016), EfficientNet-B4 (Tan and Le, 2019), DenseNet 121 (G.
Huang et al., 2017), ResNet50 (Szegedy et al., 2017), MobileNet
(Howard et al., 2017), Xception (Chollet, 2017), Inception ResNet
V2 (Szegedy et al., 2017). All these pre-trained networks are trained
on the same ImageNet database, which is a database of RGB images,
and using as input the three RGB channels of the images. These
architectures are particularly convenient for our task, since our NLO
cell-images also consists of three channels (SRS, TPEF and
Transmission).

For the first architecture using TL, we employ a hybrid TL and
Machine Learning (ML) approach, that utilizes all the seven pre-
trained networks presented before and is shown in Figure 2B (blue
box). The algorithm consisted of two parts. In the initial part, an
“off-the-shelf” pre-trained network (without network retraining) is
used (Zhuang et al., 2021). This network transforms the input image
into a 1D vector, the size of which is dependent on the chosen pre-
trained network. Whereas, in the second part, the classification is
performed first using a Principal Component Analysis (PCA)
(Jolliffe et al., 2016) to reduce the dimensionality of the 1D
vector and then a Support Vector Machine (SVM) (Hearst et al.,
1998) with a polynomial kernel for the actual classification. PCA is a
widely used dimensionality reduction technique that transforms
high-dimensional data into a lower-dimensional space by
identifying the orthogonal directions of maximum variance, while
SVM is a powerful ML algorithm that identifies a hyperplane in a
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high-dimensional space to effectively separate different classes of
data points by maximizing the distance between them. The best
parameters of the SVM are learned autonomously by the system
using the Cross-Validation method (Yadav, 2016). As each of the
seven different pre-trained networks provides an independent
classification, the final label assigned to an image in the test set is
obtained through a hard voting scheme, where the class with the
highest number of votes is assigned as the label.

Successively, always in the TL framework, we design a more
sophisticated method, entirely based on deep-learning, which is
sketched in Figure 2B (red box). In this case, we build a small and
dense neural network on top of the pre-trained networks,
composed by a 2D global max pooling, followed by a dropout
layer (dropout rate = 0.8), a 4-neuron dense layer with ReLu
activation function and a dense 1-neuron layer with sigmoid
activation function, thus providing as an output the probability
that the input image effectively belongs to the senescent class.
The overall network undergoes a double training process. At the
beginning, the pre-trained network is used in the “off-the-shelf”
manner, where only the weights of the final dense layers are
trained. Subsequently, the parameters of the pre-trained
network are also fine-tuned, to better adapt them to the
multimodal NLO microscopy images, together with a further
fine-tuning also of the final dense layers weights. Indeed, because
the pre-trained networks were trained on RGB images, which are
structurally different from the NLO cell-images used for our TIS

classification, the pre-trained weights need a fine-tuning
step. However, this second part of the training could lead to a
strong overfitting, due to the small size of the dataset and the
large number of parameters involved, therefore this fine-tuning
is performed with a very small learning rate (2 x 10−5), which
allows us to obtain better performances as it will be shown in the
Results section. Eventually, this approach results in seven TL
classifiers, whose performances vary depending on the specific
pre-trained network employed.

The last approach we employ is based on the Ensemble Learning
(EL) technique (Dietterich, 2000). EL is a strategy that aims to
enhance the performance and the stability of a single model by
combining multiple simple models (weak learners). This is achieved
by promoting significant diversity among the models, which can be
accomplished by training the individual models on a subset of
features or a portion of the entire dataset. In the realm of
machine learning, Random Forest is an example of EL based on
simpler Decision Tree (Breiman, 2001). The predictions of the
simpler models can be combined in a weighted scheme or non-
weighted voting scheme, which is the one used in this work. Namely,
in a non-weighted voting scheme with n learners, every learner li
predicts a probability pij for every class cj. These probabilities are
then equally averaged and the predicted class of the whole
architecture is the one with higher probability, therefore

PredictedClass � argmaxj(1n∑
n

i�1
pij).

FIGURE 2
A schematic illustration of the building blocks of the CNN architectures used. (A) The CNN from scratch contains three convolutional layers, two 2D
max pooling layer, a global max pooling and a dropout layer. The classification task is performed using two fully connected layers of 4 neurons, with a
ReLu activation function, and 1 neuron, with a sigmoid activation function. (B) The TL approach features seven different pre-trained networks that extract
themost relevant information of the three-channel image into a 1D array. The classification task is performed either using a combination of PCA and
SVM (ML approach, blue box), or via some classification layers built on top of the pre-trained networks (DL approach, red box). The 3-channel label-free
microscopy images in input to the neural networks consist of optical transmission (TRASM), SRS at the 2850 cm−1 Ramanmode of lipids (SRS), and TPEF of
the intrinsic NADH and FAD coenzymes (TPEF).
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In our case, the ensemble is composed of the seven pre-
trained networks cited before, which are considered as the weak
learners, to which the fully connected classification layers are
added, as already shown in the red box of Figure 2B. These
networks are first used in the off-the-shelf manner (frozen EL
network) and then applying fine-tuning also to the pre-trained
weights (fully trained EL network). In Figure 3 we give a visual
representation of the ensemble technique here described,
indicating in both cases which portion of the network was
affected by the training. The cost function employed for the
individual training of the networks is the binary cross-entropy

Cross Entropy � − 1
N

·∑
n

i�1
yi log pi( ) + 1 − yi( )log 1 − pi( ) (1)

where yi is the ground truth label of image i and pi is its probability
of being senescent extracted from the network at each epoch (Zhang
et al., 2018). We adopt a L1 and L2 penalty scheme with a
0.01 penalty coefficient for the 4-neuron dense layer, a batch size
of 20 images, a maximum of 200 epochs, a learning rate of 5 x 10−4

for the training of the dense layers and a learning rate of 2 x 10−5 for
the pre-trained weights fine-tuning. Moreover, in the training
process, to avoid strong overfitting, we use an early stopping
training with a patience of 20 epochs, which is based on the use
of a validation dataset randomly extracted from the training dataset
and aimed to stop the training if the binary cross-entropy on the
validation set does not decrease of at least 0.005 over a patience of
20 consecutive epochs. Indeed, overfitting is a fundamental issue in
ML which occurs when a model is trained too much on the training

dataset, leading to poor performance on an unseen test dataset
(Ying, 2019). To introduce randomness in this scheme and further
improve the power of the ensemble, we generate a different
augmented training dataset for each of the seven pre-trained
networks, because this leads to a higher variability among the
seven networks, leading to a higher generalization ability of the
model (Dietterich, 2000). The predicted probabilities coming out
from the seven networks are then simply averaged in a non-weighted
voting scheme and the ultimate classification is based on the class
with larger averaged probability.

All the neural networks described are implemented in Python
3.8.8 using Tensorflow 2.5.0 and Keras 2.5.0. The training of the
networks was performed using an NVIDIA GeForce RTX
3090 GPU. This allows us to have a training time of around
2.5 h for the fully trained EL network and a prediction time for
all the 54 images in the test set of just 1.3 s, namely 24 ms per image.
Moreover, 24 ms is less than the acquisition time for every image
and therefore this tool could also support real time classification.
The program code used in this work is available for use and re-use
under an open-source license and can be accessed via GitHub
(https://github.com/salvasorrentino/deep_learning_senescence).

2.5 Metrics for networks performance
evaluation

To evaluate our different classification architectures, we use
the following metrics for the different algorithms trained:

FIGURE 3
Workflowof the proposed EL framework for the classification of TIS (Senescent) and proliferating (Control) cancer cells. We investigate two different
TL scenarios, in which the classification probability is given by the average of the probabilities predicted employing seven different pretrained networks. In
the first actualization, the weights of the pre-trained networks are left untouched, while in the final model, both the weights of the classification layers and
the pre-trained networks are fine-tuned. The 3-channel label-freemicroscopy images in input to the neural networks consist of optical transmission
(TRASM), SRS at the 2850 cm−1 Raman mode of lipids (SRS), and TPEF of the intrinsic NADH and FAD coenzymes (TPEF).
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accuracy, precision, recall, F1-score, and AUC (J. Huang and
Ling, 2005). Accuracy is defined as the percentage of instances in
the test set properly classified by the algorithms; precision is the
ratio of senescent cells properly classified over whole number of
senescent cells predicted from the test set; recall is the ratio of
senescent cells properly classified over the whole number of
senescent cells in the test set, F1-score is a harmonic average
of precision and recall. The definition of these metrics in terms of
True Positive (TP), True Negative (TN), False Positive (FP) and
False Negative (FN) is presented in Table 1. AUC is defined as the
Area under the Receiver Operating Characteristic (ROC) curve,
where the ROC curve is a plot showing the diagnostic ability of a
binary classifier as its discrimination threshold is changed.

3 Results

The results in terms of accuracy, precision, recall and F1-score
for the different approaches are presented in Figure 4. To obtain

metrics that are independent of chance-based correct classifications
during a single training, we calculate the mean and standard
deviation of the metrics across nine different training runs of the
networks, thereby providing a measure of uncertainty over the
trainings. Overall, the fully trained EL network has demonstrated
superior performances over the competing methods both in terms of
mean values and standard deviations. The fully trained EL network
is the approach with the highest performances in terms of accuracy
(90.1%), recall (87.4%) and F1-score (90.8%). Among the
competitors, Inception V3 achieves the highest precision (95.7%),
but this result is due to the imbalance between the predictions as
senescence or control of this network, as confirmed by the poor
recall (55.9%), meaning that Inception V3 fails to recognize many
senescent images. Looking at the seven networks which compose the
ensemble, we observe that the accuracy ranges from 74.1%
(Inception V3) to 78.6% (MobileNet), which is lower than the
values obtained both by the fully trained EL network and the
frozen EL network (85.8%). Finally, while the hybrid TL/ML
approach (85.4%) and the network from scratch (71.5%) do not
reach competitive performances for the accuracy, the former
interestingly scores better and more consistently than most of the
other models, and comparable to the frozen EL network.

The maximum AUC over the nine training steps and the
corresponding ROC curves for the fully trained EL network, the
frozen EL network, the hybrid TL/ML approach, and the neural
network trained from scratch are reported in Figure 5. Also in
this case, the fully trained EL network performs best, with the
highest AUC score (0.960), larger than the one of the frozen EL
network (0.936), while the hybrid TL/ML approach presents an
AUC of 0.924, which confirms the slightly lower performances
compared with the EL approaches. Among the individual pre-
trained networks, ResNet 50 is the one with the best score (0.919,
not shown in Figure 5). Table 2 summarizes all the performances

TABLE 1 The performance metrics used to compare the different classifiers. TP
is an outcome where the model correctly predicts the senescent class, whereas
TN is an outcome where the model correctly predicts the control class.
Conversely, FP is an outcome where the model incorrectly predicts the
senescent class, and FN is an outcome where themodel incorrectly predicts the
control class.

Metrics Formula

Accuracy (TP + TN)/(TP + TN + FP + FN)

Precision TP/(TP + FP)

Recall TP/(TP + FN)

F1 − score 2TP/(2TP + FP + FN)

FIGURE 4
Mean Accuracy, F1-Score, Precision, and Recall results for all the trained networks. The Fully Trained EL Network performs consistently well in every
metric. The higher precision of Inception V3 and the Frozen EL Network are due to a low number of cells classified as Senescent as it is clear from the very
low Recall.
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in terms of average accuracy, precision, recall, F1-score, and
maximum AUC over the nine training steps for each presented
approach.

In order to substantiate the efficacy of incorporating images
encompassing all three channels (SRS, TPEF, Transmission) as
input for neural networks, we also conducted training on the

fully trained EL network using each of the three feasible two-
channel combinations, namely TPEF-Transmission, SRS-
Transmission, and SRS-TPEF. Remarkably, these combinations
achieved accuracies of 85.8%, 87.2%, and 87.4%, respectively.
Detailed outcomes are presented in the Supplementary Material.
Even though these results fall short of the 90.1% accuracy obtained
by the fully trained EL network with a 3-channel input, they prove
the value of using combined information from SRS, TPEF, and
Transmission. Indeed, learning from the joint distribution present in
all three channels, the network acquires the capability of enhancing
the prediction performance on the test set. In addition to the
comparison of metrics, for the evaluation of our different
classification architectures, we adapt the Grad-CAM visualization
approach (Selvaraju et al., 2017) to the fully trained EL network.
Grad-CAM is a technique which produces a visual representation of
the criteria used by CNN-based models to perform a given
classification task, increasing its interpretability. The Grad-CAM
approach uses the gradients of any possible label in the CNN
network, flowing into the final convolutional layer, to produce a
coarse localization map which highlights the most significant
regions in the image that contribute to the network prediction
(Selvaraju et al., 2017). In this work, we use the Grad-CAM
maps to visualize how the fully trained EL network is learning,
namely which are the key features inside the image leading to a
particular label (senescent or control) in the classification process.
We can use this information to understand the possible reasons for
the misclassification of some images in the test set. Since our
classifier outputs 1 for the senescent label and 0 for the control
label, it implies that the brighter the pixels in the map, the higher is
their importance for the classification of the image as senescent.
Conversely, we expect that a cell classified as proliferating
(i.e., control) features dark pixels in the Grad-CAM map. We
derive these maps both for the SRS channel and the TPEF
channel, which are the two main channels used in our previous
work (Bresci et al., 2023) to extract statistical indicators of
senescence. Hence, in Figure 6 we present eight Grad-CAM
maps, with their corresponding SRS and TPEF signals, both for

FIGURE 5
ROC curves corresponding to the maximum AUC over the
9 training steps for the main architectures considered for the
classification of Control versus Senescent cells. All the ROC curves
except the one for the TL/ML approach are drawn calculating the
True Positive Rate and False Positive Rate adjusting the classification
probability threshold. In the TL/ML approach the True Positive Rate
and False Positive Rate are calculated using as threshold the number
of pre-trained networks (out of seven) predicting senescence through
the final SVM level.

TABLE 2 Performances of the classifiers across nine different training runs, measured in terms of mean and standard deviation (SD) for every metric. For the AUC is
reported the maximum value through the nine training steps. All values are given in percentages.

Model Accuracy ± SD Precision ± SD Recall ± SD F1-Score ± SD Max AUC

Fully Trained EL Network 90.1 ± 1.2 94.5 ± 2.2 87.4 ± 2.6 90.8 ± 1.2 96.0

Inception V3 74.1 ± 2.6 95.7 ± 3.4 55.9 ± 4.7 70.5 ± 3.7 89.4

ResNet 50 77.3 ± 3.9 84.8 ± 8.5 74.8 ± 14.0 77.9 ± 6.2 91.9

EfficientNet B4 75.3 ± 2.8 86.6 ± 9.7 68.9 ± 14.4 75.0 ± 5.5 83.6

DenseNet 121 77.2 ± 3.8 83.8 ± 8.1 75.6 ± 12.6 78.2 ± 5.5 90.6

MobileNet 78.6 ± 4.6 84.0 ± 7.5 77.9 ± 12.4 79.7 ± 6.0 91.4

Inception Resnet V2 78.4 ± 4.4 85.4 ± 7.8 75.8 ± 12.6 79.1 ± 5.9 86.9

Xception 78.4 ± 4.2 85.9 ± 7.5 75.0 ± 12.1 79.0 ± 5.7 86.1

Frozen EL Network 85.8 ± 2.9 95.8 ± 2.8 77.9 ± 5.9 85.8 ± 3.3 93.6

Hybrid TL/ML Network 85.4 ± 3.1 85.9 ± 2.9 84.7 ± 3.3 85.3 ± 3.1 92.4

Network From Scratch 71.5 ± 9.4 81.5 ± 16.9 76.5 ± 23.4 73.7 ± 10.7 83.6
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correctly classified and misclassified control and senescent images.
Despite the limited spatial resolution of the approach, due to the 6 ×
8 pixels size of the extracted maps that are then upscaled to the
image size (250 × 300 pixels) via linear interpolation, the maps
confirm that the network is effectively learning the primary cellular
features of the images that are responsible for classification. The 8 ×
6 pixels size of the maps comes directly from the size of the last
convolutional layer and is a consequence of the squeezing effect
induced by the kernel in this layer.

4 Discussion

The simplest approach that we use as a baseline for our study is
represented by the training of a CNN network from scratch. This
approach leads to poor results in terms both of accuracy (71.5%) and
AUC (0.836) and this is due to the small number of available images
for the training of a neural network from scratch. To overcome this
limitation, TL approaches using seven different pre-trained networks
are employed. The hybrid TL/ML architecture goes in this direction
and allows us to obtain a higher result in terms of accuracy (85.4%)
and AUC (0.924). A more complex architecture is obtained adding
fully connected layers on top of the pre-trained networks. Looking at
Table 2, the performances in terms of accuracy andmaximumAUC of
each of the individual pre-trained networks do not surpass the ones of

the hybrid TL/ML approach. This is because the fully connected layers
added to the pre-trained networks necessitate of a great number of
parameters to be trained compared with the TL/ML approach, and
this likely leads to an overfitting, which is the reason for the poorer
performances. However, when the seven pre-trained networks are
considered together to constitute the ensemble in the frozen EL
network, we report a slight improvement in performances for
accuracy (85.8%), F1-score (85.8%) and AUC (0.936) with respect
to the TL/ML approach. In the fully trained EL approach, following a
fine-tuning of the pre-trained networks parameters, we observe an
additional improvement in performance, which leads to an accuracy
of 90.1%, an F1-score of 90.8% and an AUC of 0.960. The fully trained
EL network is the one with both the best overall performances for the
classification of senescent and control cells and the one with the
smallest standard deviation in all the metrics, which corroborates the
idea of an increase not only in performances but also in stability of the
EL techniques. This is clearer also comparing the metrics of the fully
trained EL network with the individual pre-trained networks which
compose the ensemble, where we notice that the accuracy of these
networks is in average 13% less than the accuracy of the fully trained
EL network, which proves the significant increase in performances of
this approach. Moreover, the fully trained EL network presents an
accuracy 4.3% higher and a standard deviation 1.7% smaller with
respect to the frozen EL network. This means that the fine tuning of
the parameters of the pre-trained networks does not increase the

FIGURE 6
Grad-CAM images relative to SRS and TPEF images of control and senescent cells. For each field of view, the NLO channels (upper row) and the
corresponding generated intensity grad-CAMS images (lower row) are presented. Images relative to: (A) a Control cell correctly classified by the network;
(B) a Senescent cell correctly classified by the network; (C) a Control cell misclassified as Senescent by the network; (D) a Senescent cell misclassified as
Control by the network.
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model overfitting, because otherwise we would observe a performance
deterioration, but allows the algorithm to adapt it better to the non-
RGB images in the training dataset, which increases the generalization
capabilities of our network. This is a relevant result, because prove the
possibility of applying usual TL trained on common RGB images also
for tasks which involve non-RGB images, after a slight fine-tuning of
the pre-trained networks weights.

Finally, we examine the evidence presented in the Grad-CAM
maps displayed in Figure 6, which are derived from the fully trained
EL network. The maps are generated based on the gradient extracted
from the network. As shown in Figure 6B, cells classified as senescent
exhibit strong activation in the maps for both SRS and TPEF images.
This activation is spatially colocalized with the bright cellular regions
of intense SRS and TPEF signals in Figure 6B, which can be associated
respectively to lipids aggregation and mitochondrial network
aggregation, previously identified as optical markers for TIS using
statistical tools (Bresci et al., 2023). Conversely, as depicted in
Figure 6A for a properly classified control cell, the Grad-CAM
maps display negligible activation. This observation is coherent
with our previous discussion, since it means that no pixels caused
the network to activate towards the prediction of the senescence class.
Furthermore, we inspect the Grad-CAM maps for the cases of image
misclassification, thus gaining useful insights for a better
comprehension of the causes leading to the wrong outcome.
Figure 6C shows a control image misclassified as a senescent one.
Typically, in control cells, mitochondria form a network of
connections that spread over the whole cytoplasm and surrounds
the nuclei. Consequently, the TPEF signal from these cells is quite
uniform and the nuclear regions are clearly visible. Compared to
Figure 6A then, the TPEF signal here appears localized in unusual,
isolated bright spots and the nuclei are not clearly distinguishable. As
such, the associated Grad-CAM map presents high value pixels
roughly colocalized with the regions of intense TPEF signals,
which were probably mistaken as features of mitochondrial
aggregation. On the other hand, Figure 6D reports the case of
senescent cells misclassified as control ones. While both the SRS
and TPEF images present intense signals, these are widely distributed
over the whole cellular area, similarly to Figure 6A, making it difficult
to assign the correct class. Indeed, cellular response to therapy changes
over treatment time, as evident from Figure 1, so that early-stage TIS
cells can display optical features that closely resemble those of control
cells, making them harder to recognize.

The reported results demonstrate the usefulness of applying
networks pre-trained on standard RGB images for the classification
of non-RGB images and this is thanks to the ability of the
convolutional layers to extract universal features from the images.
Moreover, we prove that the use of ensemble network combined
with TL leads to a strong improvement in the ability of the algorithm
to distinguish between the two classes of cells. The present study
builds upon previous work on the combined use of TL and EL for
image classification in cervical histopathology (Zheng et al., 2022).
However, our approach differs in that we employed a greater
number of pre-trained networks to constitute the ensemble and
extended the application of both the ensemble and the transfer-
learning technique, pre-trained on RGB images, to classify non-RGB
images of cells. Similarly to a previous work on the application of TL
to colon cancer classification using confocal microscopy (Gessert
et al., 2019), we assess the performance of multiple pre-trained

networks on non-RGB images and compare them with other viable
models. However, rather than selecting the top-performing
algorithm based on our evaluations, we also leverage these
comparisons to converge to a final solution that integrates the
strengths of the different networks via the EL approach.

In this work we investigate the performances of several deep-
learning algorithms to find the best classifier for the discrimination
between TIS and control cancer cells via NLO microscopy
measurements. We develop an algorithm based on TL and EL
which achieves more than 90% accuracy and F1-score. In
addition, we prove the strong increase in performances and
network stability obtained by EL. Compared with our previous
work (Bresci et al., 2023), our classification algorithm does not
rely on statistics to distinguish between the two types of cells and,
above all, provides an automatic and unbiased system to perform the
classification task. In addition, thanks to the multimodal optical
modalities at our disposal, our approach combines morphological,
chemical, and metabolic information, increasing the predictive
power of the network. The lack of labelled images is overcome
using data augmentation, TL, and EL techniques. This demonstrates
that it is possible to build a robust and accurate classifier for non-
RGB images, also starting from a small dataset by applying more
sophisticated models. Despite these advantages, our fully trained EL
network incurs a higher computational cost than neural networks
trained from scratch or using hybrid TL/ML approaches, and this
cost scales with the number of training images. Our methodology
addresses a binary classification problem. In this respect, we
envisage future research directions focusing on the development
of a multiclass classifier capable of not only distinguishing between
TIS and control cells, but also explaining how cells may progress
through stages of cellular senescence stage of the cells. The
achievement of this goal will require a larger dataset with
additional label classes corresponding to the different time-points
following the multi-step progression of senescence. We anticipate
that an advancement in the Grad-CAM methodology, enabling
higher resolution maps and thereby enhancing our understanding
of how the network is learning, could enable the discovery of novel
features in the SRS and TPEF signals that would indicate the
presence of TIS cells and identify their time stage. Moreover, the
classification power of the system could be greatly increased with the
addition of further label-free NLO channels to the network input,
such as SRS images targeting the Raman signatures of proteins and
nuclei, which proved to be effective chemical markers of senescence
(Oh et al., 2022). Our novel pre-trained algorithm, capable of
accurately identifying TIS cells in human liver cancer cells,
presents potential applicability also to cancer cells different from
HepG2. Indeed, by fine-tuning the weights of the neural network
using datasets from different cell lines, our approach could
potentially be studied also on human patients’ samples to offer a
fully automated tool for detecting TIS cells in pre-clinical screenings
and, ultimately, support clinical diagnosis. The network predictions
could provide fast, independent, and unbiased advice,
complementing expert evaluation. Furthermore, the Grad-CAM
maps integration in the network enables a deeper understanding
of the network decision-making process, enhancing the reliability of
our tool. Indeed, an end-user lacking technical knowledge about the
neural network could use the Grad-CAM maps to execute its due
diligence in checking the robustness of the predictions. Notably, our
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approach allows ranking of cells based on the probability of TIS
presence, enabling prioritization of further analysis on images with
probability close to the decision threshold of 0.5, thereby it could be
studied also for optimizing expert diagnosis efficiency.

5 Conclusion

The results of our comparisons show that the most complex deep-
learning architecture, the fully trained EL approach using an ensemble of
fine-tuned pre-trained networks, provides the best performance in terms
of accuracy, AUC and F1-score for the senescence classification task.
Moreover, the use of ensemble learning further improves the results and
increases the robustness of the classification. In conclusion, we
demonstrate that deep transfer learning models, together with
ensemble techniques, can effectively be employed for the classification
of senescent cells also starting from non-RGB images, namely NLO
microscopy signals like SRS and TPEF, opening theway to a larger use of
these techniques for automatic classification of non-standard images.We
also employ a method for the interpretability of the decision process
made by the networks, using Grad-CAM maps, which proves an
agreement between the spatial features identified by the networks as
the prominent to distinguish senescent and proliferating cells and
previous results obtained by Bresci et al., which evidence the
characterizing traits for senescence. Adapting this method to have a
larger map resolution could shed new light on the understanding of
which features are the main markers to discover cell senescence in
human cells. We also believe that this unbiased and automatic approach
for senescence classification could be tested in the pre-clinical and clinical
diagnosis of human cells senescence, becoming a valuable tool employed
in senescence detection.
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