6 research outputs found

    HIF2α is a Direct Regulator of Neutrophil Motility

    Get PDF
    Orchestrated recruitment of neutrophils to inflamed tissue is essential during initiation of inflammation. Inflamed areas are usually hypoxic, and adaptation to reduced oxygen pressure is typically mediated by hypoxia pathway proteins. However, it is still unclear how these factors influence the migration of neutrophils to and at the site of inflammation either during their transmigration through the blood-endothelial cell barrier, or their motility in the interstitial space. Here, we reveal that activation of the Hypoxia Inducible Factor-2 (HIF2α) due to deficiency of HIF-prolyl hydroxylase domain protein-2 (PHD2) boosts neutrophil migration specifically through highly confined microenvironments. In vivo, the increased migratory capacity of PHD2-deficient neutrophils resulted in massive tissue accumulation in models of acute local inflammation. Using systematic RNAseq analyses and mechanistic approaches, we identified RhoA, a cytoskeleton organizer, as the central downstream factor that mediates HIF2α-dependent neutrophil motility. Thus, we propose that the here identified novel PHD2-HIF2α-RhoA axis is vital to the initial stages of inflammation as it promotes neutrophil movement through highly confined tissue landscapes

    Innate Immune Training of Granulopoiesis Promotes Anti-tumor Activity

    Get PDF
    Trained innate immunity, induced via modulation of mature myeloid cells or their bone marrow progenitors, mediates sustained increased responsiveness to secondary challenges. Here, we investigated whether anti-tumor immunity can be enhanced through induction of trained immunity. Pre-treatment of mice with beta-glucan, a fungal-derived prototypical agonist of trained immunity, resulted in diminished tumor growth. The anti-tumor effect of beta-glucan-induced trained immunity was associated with transcriptomic and epigenetic rewiring of granulopoiesis and neutrophil reprogramming toward an anti-tumor phenotype; this process required type I interferon signaling irrespective of adaptive immunity in the host. Adoptive transfer of neutrophils from beta-glucan-trained mice to naive recipients suppressed tumor growth in the latter in a ROS-dependent manner. Moreover, the anti-tumor effect of beta-glucan-induced trained granulopoiesis was transmissible by bone marrow transplantation to recipient naive mice. Our findings identify a novel and therapeutically relevant anti-tumor facet of trained immunity involving appropriate rewiring of granulopoiesis

    Autophagy orchestrates the regulatory program of tumor-associated myeloid-derived suppressor cells

    No full text
    Myeloid-derived suppressor cells (MDSCs) densely accumulate into tumors and potently suppress antitumor immune responses, promoting tumor development. Targeting MDSCs in tumor immunotherapy has been hampered by lack of understanding of the molecular pathways that govern MDSC differentiation and function. Herein, we identify autophagy as a crucial pathway for MDSC-mediated suppression of antitumor immunity. Specifically, MDSCs in patients with melanoma and mouse melanoma exhibited increased levels of functional autophagy. Ablation of autophagy in myeloid cells markedly delayed tumor growth and endowed antitumor immune responses. Notably, tumor-infiltrating autophagy-deficient monocytic MDSCs (M-MDSCs) demonstrated impaired suppressive activity in vitro and in vivo, whereas transcriptome analysis revealed substantial differences in genes related to lysosomal function. Accordingly, autophagy-deficient M-MDSCs exhibited impaired lysosomal degradation, thereby enhancing surface expression of MHC class II molecules, resulting in efficient activation of tumor-specific CD4+ T cells. Finally, targeting of the membrane-associated RING-CH1 (MARCH1) E3 ubiquitin ligase that mediates the lysosomal degradation of MHC II in M-MDSCs attenuated their suppressive function, and resulted in markedly decreased tumor volume followed by development of a robust antitumor immunity. Collectively, these findings depict autophagy as a molecular target of MDSC-mediated suppression of antitumor immunity. © 2018 American Society for Clinical Investigation. All rights reserved

    HIF2α is a direct regulator of neutrophil motility.

    No full text
    Orchestrated recruitment of neutrophils to inflamed tissue is essential during initiation of inflammation. Inflamed areas are usually hypoxic, and adaptation to reduced oxygen pressure is typically mediated by hypoxia pathway proteins. However, it is still unclear how these factors influence the migration of neutrophils to and at the site of inflammation either during their transmigration through the blood-endothelial cell barrier, or their motility in the interstitial space. Here, we reveal that activation of the Hypoxia Inducible Factor-2 (HIF2α) due to deficiency of HIF-prolyl hydroxylase domain protein-2 (PHD2) boosts neutrophil migration specifically through highly confined microenvironments. In vivo, the increased migratory capacity of PHD2-deficient neutrophils resulted in massive tissue accumulation in models of acute local inflammation. Using systematic RNAseq analyses and mechanistic approaches, we identified RhoA, a cytoskeleton organizer, as the central downstream factor that mediates HIF2α-dependent neutrophil motility. Thus, we propose that the here identified novel PHD2-HIF2α-RhoA axis is vital to the initial stages of inflammation as it promotes neutrophil movement through highly confined tissue landscapes

    Multiple Dynamics in Tumor Microenvironment Under Radiotherapy.

    No full text
    The tumor microenvironment (TME) is an evolutionally low-level and embryonically featured tissue comprising heterogenic populations of malignant and stromal cells as well as noncellular components. Under radiotherapy (RT), the major modality for the treatment of malignant diseases [1], TME shows an adaptive response in multiple aspects that affect the efficacy of RT. With the potential clinical benefits, interests in RT combined with immunotherapy (IT) are intensified with a large scale of clinical trials underway for an array of cancer types. A better understanding of the multiple molecular aspects, especially the cross talks of RT-mediated energy reprogramming and immunoregulation in the irradiated TME (ITME), will be necessary for further enhancing the benefit of RT-IT modality. Coming studies should further reveal more mechanistic insights of radiation-induced instant or permanent consequence in tumor and stromal cells. Results from these studies will help to identify critical molecular pathways including cancer stem cell repopulation, metabolic rewiring, and specific communication between radioresistant cancer cells and the infiltrated immune active lymphocytes. In this chapter, we will focus on the following aspects: radiation-repopulated cancer stem cells (CSCs), hypoxia and re-oxygenation, reprogramming metabolism, and radiation-induced immune regulation, in which we summarize the current literature to illustrate an integrated image of the ITME. We hope that the contents in this chapter will be informative for physicians and translational researchers in cancer radiotherapy or immunotherapy
    corecore