484 research outputs found

    A rat model of picornavirus-induced airway infection and inflammation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infection of the lower airways by rhinovirus, a member of the picornavirus family, is an important cause of wheezing illnesses in infants, and plays an important role in the pathogenesis of rhinovirus-induced asthma exacerbations. Given the absence of natural rhinovirus infections in rodents, we investigated whether an attenuated form of mengovirus, a picornavirus whose wild-type form causes systemic rather than respiratory infections in its natural rodent hosts, could induce airway infections in rats with inflammatory responses similar to those in human rhinovirus infections.</p> <p>Results</p> <p>After inoculation with 10<sup>7 </sup>plaque-forming units of attenuated mengovirus through an inhalation route, infectious mengovirus was consistently recovered on days 1 and 3 postinoculation from left lung homogenates (median Log<sub>10 </sub>plaque-forming units = 6.0 and 4.8, respectively) and right lung bronchoalveolar lavage fluid (median Log<sub>10 </sub>plaque-forming units = 5.8 and 4.0, respectively). Insufflation of attenuated mengovirus, but not vehicle or UV-inactivated virus, into the lungs of BN rats caused significant increases <it>(P </it>< 0.05) in lower airway neutrophils and lymphocytes in the bronchoalveolar lavage fluid and patchy peribronchiolar, perivascular, and alveolar cellular infiltrates in lung tissue sections. In addition, infection with attenuated mengovirus significantly increased (<it>P </it>< 0.05) lower airway levels of neutrophil chemoattractant CXCR2 ligands [cytokine-induced neutrophil chemoattractant-1 (CINC-1; CXCL1) and macrophage inflammatory protein-2 (MIP-2; CXCL2)] and monocyte chemoattractant protein-1 (MCP-1; CCL2) in comparison to inoculation with vehicle or UV-inactivated virus.</p> <p>Conclusion</p> <p>Attenuated mengovirus caused a respiratory infection in rats with several days of viral shedding accompanied by a lower airway inflammatory response consisting of neutrophils and lymphocytes. These features suggest that mengovirus-induced airway infection in rodents could be a useful model to define mechanisms of rhinovirus-induced airway inflammation in humans.</p

    Clinical implications of having reduced mid forced expiratory flow rates (FEF25-75), independently of FEV1, in adult patients with asthma

    Get PDF
    INTRODUCTION:FEF25-75 is one of the standard results provided in spirometry reports; however, in adult asthmatics there is limited information on how this physiological measure relates to clinical or biological outcomes independently of the FEV1 or the FEV1/FVC ratio. PURPOSE:To determine the association between Hankinson's percent-predicted FEF25-75 (FEF25-75%) levels with changes in healthcare utilization, respiratory symptom frequency, and biomarkers of distal airway inflammation. METHODS:In participants enrolled in the Severe Asthma Research Program 1-2, we compared outcomes across FEF25-75% quartiles. Multivariable analyses were done to avoid confounding by demographic characteristics, FEV1, and the FEV1/FVC ratio. In a sensitivity analysis, we also compared outcomes across participants with FEF25-75% below the lower limit of normal (LLN) and FEV1/FVC above LLN. RESULTS:Subjects in the lowest FEF25-75% quartile had greater rates of healthcare utilization and higher exhaled nitric oxide and sputum eosinophils. In multivariable analysis, being in the lowest FEF25-75% quartile remained significantly associated with nocturnal symptoms (OR 3.0 [95%CI 1.3-6.9]), persistent symptoms (OR 3.3 [95%CI 1-11], ICU admission for asthma (3.7 [1.3-10.8]) and blood eosinophil % (0.18 [0.07, 0.29]). In the sensitivity analysis, those with FEF25-75% <LLN had significantly more nocturnal and persistent symptoms, emergency room visits, higher serum eosinophil levels and increased methacholine responsiveness. CONCLUSIONS:After controlling for demographic variables, FEV1 and FEV1/FVC, a reduced FEF25-75% is independently associated with previous ICU admission, persistent symptoms, nocturnal symptoms, blood eosinophilia and bronchial hyperreactivity. This suggests that in some asthmatics, a reduced FEF25-75% is an independent biomarker for more severe asthma

    Addition to inhaled corticosteroids of long-acting beta2-agonists versus anti-leukotrienes for chronic asthma

    Get PDF
    Asthma patients who continue to experience symptoms despite being on regular inhaled corticosteroids (ICS) represent a management challenge. Long-acting beta2-agonists (LABA) or anti-leukotrienes (LTRA) are two treatment options that could be considered as add-on therapy to ICS.ObjectivesWe compared the efficacy and safety profile of adding either daily LABA or LTRA in adults and children with asthma who remain symptomatic on ICS.Search strategyWe searched the Cochrane Airways Group Specialised Register (up to and including March 2010). We consulted reference lists of all included studies and contacted authors and pharmaceutical manufacturers for other published or unpublished studies.Selection criteriaWe included randomised controlled trials (RCTs) conducted in adults or children with recurrent asthma that was treated with ICS and where a fixed dose of a long-acting beta2-agonist or leukotriene agent was added for a minimum of 28 days.Data collection and analysisTwo authors independently assessed the risk of bias of included studies and extracted data. We sought unpublished data and further details of study design, where necessary.Main resultsWe included 17 RCTs (7032 participants), of which 16 recruited adults and adolescents (6850) and one recruited children aged 6 to 17 years (182). Participants demonstrated substantial reversibility to short-acting beta-agonist at baseline. The studies were at a low risk of bias. The risk of exacerbations requiring systemic corticosteroids was lower with the combination of LABA and ICS compared with LTRA and ICS, from 11% to 9% (RR 0.83, 95% CI 0.71 to 0.97; six studies, 5571 adults). The number needed to treat (NNT) with LABA compared to LTRA to prevent one exacerbation over 48 weeks was 38 (95% CI 22 to 244). The choice of LTRA did not significantly affect the results. The effect appeared stronger in the trials using a single device to administer ICS and LABA compared to those using two devices. In the absence of data from the paediatric trial and the clinical homogeneity of studies, we could not perform subgroup analyses. The addition to ICS of LABA compared to LTRA was associated with a statistically greater improvement from baseline in several of the secondary outcomes, including lung function, functional status measures and quality of life. Serious adverse events were more common with LABA than LTRA, although the estimate was imprecise (RR 1.35, 95% CI 1.00 to 1.82), and the NNT to harm for one additional patient to suffer a serious adverse event on LABA over 48 weeks was 78 (95% CI 33 to infinity). The risk of withdrawal for any reason in adults was significantly lower with LABA and ICS compared to LTRA and ICS (RR 0.84, 95% CI 0.74 to 0.96).Authors' conclusionsIn adults with asthma that is inadequately controlled on low doses of inhaled steroids and showing significant reversibility with beta2-agonists, LABA is superior to LTRA in reducing oral steroid treated exacerbations. Differences favouring LABA in lung function, functional status and quality of life scores are generally modest. There is some evidence of increased risk of SAEs with LABA. The findings support the use of a single inhaler for the delivery of LABA and inhaled corticosteroids. We are unable to draw conclusions about which treatment is better as add-on therapy for children.PLAIN LANGUAGE SUMMARYWhat are the effects of long-acting beta2-agonists compared with anti-leukotrienes when added to inhaled steroids?People who continue to experience asthma symptoms despite regularly taking inhaled corticosteroids are a challenge for management. It is not clear whether the addition of a long-acting beta2-agonist (LABA) such as formoterol or salmeterol would provide more benefit in comparison with an oral anti-leukotriene agent (LTRA), for example zafirlukast or montelukast.Seventeen trials (16 in adults and one in children) were included in this review and were of good quality. We found that the addition of a LABA provides significantly greater protection against exacerbations requiring oral steroids when compared with a LTRA for adults. Based on the results of our analyses, approximately 38 adults (with a range of between 22 and 244) would need to be treated with a LABA rather than a LTRA for 48 weeks to prevent one experiencing an exacerbation needing a course of oral steroids. The trial on children did not contribute data on the main outcome and therefore we could not draw any conclusions for children.LABAs also led to a greater improvement in lung function, improvement in symptoms, use of rescue medication, quality of life and symptoms compared to the use of LTRAs. The magnitude of the improvements was modest. Serious adverse events were more frequent with LABA than with LTRAs although this result was imprecise. Based on our analyses, around 78 people would need to be treated for 48 weeks with a LABA rather than a LTRA for one of them to experience a serious adverse event. However, due to the lack of precision around our result, the true number could be between 33 and infinity. There are currently insufficient data to draw any conclusions about the effects of these drugs in children

    Distinct Airway Inflammatory Pathways Associated with Asthma Exacerbations are Modulated by Mepolizumab Therapy in Children

    Get PDF
    Rationale: Identification of specific airway inflammatory pathways can lead to effective personalized treatment with biologics in asthma and insights to mechanisms of action. Methods: 290 urban children with exacerbation-prone asthma and ≥150/mm3 blood eosinophils were randomized (1:1) to placebo or mepolizumab added to guideline-based care. Nasal lavage samples were collected at randomization and during treatment for RNA-sequencing, and analyzed by cell-deconvolution modular analysis to assess genome-wide expression patterns associated with exacerbation number and effect of treatment. Results: Mepolizumab significantly reduced the frequency of exacerbations compared to placebo. At randomization, there were no differences in expression between treatment groups; multiple modules were subsequently differentially expressed during mepolizumab but not placebo treatment. Furthermore, expression levels of multiple modules were associated with the exacerbation number during the study, with distinct relationships observed in the placebo and/or mepolizumab groups. Notably, higher expression at randomization of an eosinophil-associated module enriched for Type-2 genes including IL4, IL5, and IL13, was associated with increased exacerbations in placebo (β=0.19, p\u3c0.001), but not mepolizumab-treated children (interaction p\u3c0.01). Furthermore, mepolizumab treatment reduced expression of this module (Fold-change=0.62, p\u3c0.001). In contrast, higher expression at randomization of an eosinophil-associated module enriched for eosinophil activation (e.g. CD9) and mucus hypersecretion (e.g. MUC5AC) genes was associated with exacerbation number in both groups throughout the study (β=0.18, p\u3c0.01) and was unaltered by mepolizumab therapy. Conclusions: Multiple distinct airway inflammation patterns were identified associated with exacerbation frequency. These findings identify inflammatory endotypes and indicate likelihood and potential mechanisms of a beneficial clinical response to mepolizumab therapy to prevent exacerbations

    Lower Respiratory Tract Infection Induced by a Genetically Modified Picornavirus in Its Natural Murine Host

    Get PDF
    Infections with the picornavirus, human rhinovirus (HRV), are a major cause of wheezing illnesses and asthma exacerbations. In developing a murine model of picornaviral airway infection, we noted the absence of murine rhinoviruses and that mice are not natural hosts for HRV. The picornavirus, mengovirus, induces lethal systemic infections in its natural murine hosts, but small genetic differences can profoundly affect picornaviral tropism and virulence. We demonstrate that inhalation of a genetically attenuated mengovirus, vMC0, induces lower respiratory tract infections in mice. After intranasal vMC0 inoculation, lung viral titers increased, peaking at 24 h postinoculation with viral shedding persisting for 5 days, whereas HRV-A01a lung viral titers decreased and were undetectable 24 h after intranasal inoculation. Inhalation of vMC0, but not vehicle or UV-inactivated vMC0, induced an acute respiratory illness, with body weight loss and lower airway inflammation, characterized by increased numbers of airway neutrophils and lymphocytes and elevated pulmonary expression of neutrophil chemoattractant CXCR2 ligands (CXCL1, CXCL2, CXCL5) and interleukin-17A. Mice inoculated with vMC0, compared with those inoculated with vehicle or UV-inactivated vMC0, exhibited increased pulmonary expression of interferon (IFN-α, IFN-β, IFN-λ), viral RNA sensors [toll-like receptor (TLR)3, TLR7, nucleotide-binding oligomerization domain containing 2 (NOD2)], and chemokines associated with HRV infection in humans (CXCL10, CCL2). Inhalation of vMC0, but not vehicle or UV-inactivated vMC0, was accompanied by increased airway fluid myeloperoxidase levels, an indicator of neutrophil activation, increased MUC5B gene expression, and lung edema, a sign of infection-related lung injury. Consistent with experimental HRV inoculations of nonallergic, nonasthmatic human subjects, there were no effects on airway hyperresponsiveness after inhalation of vMC0 by healthy mice. This novel murine model of picornaviral airway infection and inflammation should be useful for defining mechanisms of HRV pathogenesis in humans

    Exposure of neonates to Respiratory Syncytial Virus is critical in determining subsequent airway response in adults

    Get PDF
    BACKGROUND: Respiratory syncytial virus (RSV) is the most common cause of acute bronchiolitis in infants and the elderly. Furthermore, epidemiological data suggest that RSV infection during infancy is a potent trigger of subsequent wheeze and asthma development. However, the mechanism by which RSV contributes to asthma is complex and remains largely unknown. A recent study indicates that the age of initial RSV infection is a key factor in determining airway response to RSV rechallenge. We hypothesized that severe RSV infection during neonatal development significantly alters lung structure and the pulmonary immune micro-environment; and thus, neonatal RSV infection is crucial in the development of or predisposition to allergic inflammatory diseases such as asthma. METHODS: To investigate this hypothesis the present study was conducted in a neonatal mouse model of RSV-induced pulmonary inflammation and airway dysfunction. Seven-day-old mice were infected with RSV (2 × 10(5 )TCID(50)/g body weight) and allowed to mature to adulthood. To determine if neonatal RSV infection predisposed adult animals to enhanced pathophysiological responses to allergens, these mice were then sensitized and challenged with ovalbumin. Various endpoints including lung function, histopathology, cytokine production, and cellularity in bronchoalveolar lavage were examined. RESULTS: RSV infection in neonates alone led to inflammatory airway disease characterized by airway hyperreactivity, peribronchial and perivascular inflammation, and subepithelial fibrosis in adults. If early RSV infection was followed by allergen exposure, this pulmonary phenotype was exacerbated. The initial response to neonatal RSV infection resulted in increased TNF-α levels in bronchoalveolar lavage. Interestingly, increased levels of IL-13 and mucus hyperproduction were observed almost three months after the initial infection with RSV. CONCLUSION: Neonatal RSV exposure results in long term pulmonary inflammation and exacerbates allergic airways disease. The early increase in TNF-α in the bronchoalveolar lavage implicates this inflammatory cytokine in orchestrating these events. Finally, the data presented emphasize IL-13 and TNF-α as potential therapeutic targets for treating RSV induced-asthma

    Use of fractional exhaled nitric oxide to guide the treatment of asthma an official american thoracic society clinical practice guideline

    Get PDF
    Background: The fractional exhaled nitric oxide (FENO) test is a point-of-care test that is used in the assessment of asthma.Objective: To provide evidence-based clinical guidance on whether FENO testing is indicated to optimize asthma treatment in patients with asthma in whom treatment is being considered.Methods: An international, multidisciplinary panel of experts was convened to form a consensus document regarding a single question relevant to the use of FENO. The question was selected from three potential questions based on the greatest perceived impact on clinical practice and the unmet need for evidencebased answers related to this question. The panel performed systematic reviews of published randomized controlled trials between 2004 and 2019 and followed the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) evidence-to-decision framework to develop recommendations. All panel members evaluated and approved the recommendations.Main Results: After considering the overall low quality of the evidence, the panel made a conditional recommendation for FENO-based care. In patients with asthma in whom treatment is being considered, we suggest that FENO is beneficial and should be used in addition to usual care. This judgment is based on a balance of effects that probably favors the intervention; the moderate costs and availability of resources, which probably favors the intervention; and the perceived acceptability and feasibility of the intervention in daily practice.Conclusions: Clinicians should consider this recommendation to measure FENO in patients with asthma in whom treatment is being considered based on current best available evidence. </p

    Evaluating the Suitability of Using Rat Models for Preclinical Efficacy and Side Effects with Inhaled Corticosteroids Nanosuspension Formulations

    Get PDF
    Inhaled corticosteroids (ICS) are often prescribed as first-line therapy for patients with asthma Despite their efficacy and improved safety profile compared with oral corticosteroids, the potential for systemic side effects continues to cause concern. In order to reduce the potential for systemic side effects, the pharmaceutical industry has begun efforts to generate new drugs with pulmonary-targeted topical efficacy. One of the major challenges of this approach is to differentiate both efficacy and side effects (pulmonary vs. systemic) in a preclinical animal model. In this study, fluticasone and ciclesonide were used as tool compounds to explore the possibility of demonstrating both efficacy and side effects in a rat model using pulmonary delivery via intratracheal (IT) instillation with nanosuspension formulations. The inhibition of neutrophil infiltration into bronchoalveolar lavage fluid (BALF) and cytokine (TNFα) production were utilized to assess pulmonary efficacy, while adrenal and thymus involution as well as plasma corticosterone suppression was measured to assess systemic side effects. Based on neutrophil infiltration and cytokine production data, the ED50s for ciclesonide and fluticasone were calculated to be 0.1 and 0.03 mg, respectively. At the ED50, the average adrenal involution was 7.6 ± 5.3% for ciclesonide versus 16.6 ± 5.1% for fluticasone, while the average thymus involution was 41.0 ± 4.3% for ciclesonide versus 59.5 ± 5.8% for fluticasone. However, the differentiation became less significant when the dose was pushed to the EDmax (0.3 mg for ciclesonide, 0.1 mg for fluticasone). Overall, the efficacy and side effect profiles of the two compounds exhibited differentiation at low to mid doses (0.03–0.1 mg ciclesonide, 0.01–0.03 mg fluticasone), while this differentiation diminished at the maximum efficacious dose (0.3 mg ciclesonide, 0.1 mg fluticasone), likely due to overdosing in this model. We conclude that the rat LPS model using IT administration of nanosuspensions of ICS is a useful tool to demonstrate pulmonary-targeted efficacy and to differentiate the side effects. However, it is only suitable at sub-maximum efficacious levels

    Report of the 2011-2012 AACP Special Advisory Committee on Research and Graduate Education

    Get PDF
    According to the Bylaws of the American Association of Colleges of Pharmacy (AACP), the Research and Graduate Affairs Committee (RGAC) shall provide assistance to the Association in developing its research, graduate education, and scholarship agenda. This assistance may include facilitating colleges and schools in formulating and advancing legislative and regulatory initiatives, and nurturing collaborative activities with organizations sharing an interest in issues related to the pharmaceutical sciences
    corecore