13 research outputs found
Achieving saturation in vertical organic transistors for organic light-emitting diode driving by nanorod channel geometric control
When conventional field-effect transistors with short channel length suffer from non-saturated output characteristics, this work proposed a vertical channel transistor to operate like a solid-state vacuum tube and exhibit good saturated curves. We utilized deep ultra-violet interference lithography to produce ordered grid-like metal to control the potential profile in vertical channel. We compared experimental and simulated characteristics to investigate the keys to achieve saturation. Finally, with an optimized design, a vertical organic transistor is used to drive a solution-processed white-light organic light-emitting diode to perform a luminescence control (0-260 cd/m(2)) with a 3.3-V base potential swing. (C) 2013 AIP Publishing LLC. [10.1063/1.4802999
Rapid Prototyping of Polymeric Nanopillars by 3D Direct Laser Writing for Controlling Cell Behavior
Mammalian cells have been widely shown to respond to nano-and microtopography that mimics the extracellular matrix. Synthetic nano-and micron-sized structures are therefore of great interest in the field of tissue engineering, where polymers are particularly attractive due to excellent biocompatibility and versatile fabrication methods. Ordered arrays of polymeric pillars provide a controlled topographical environment to study and manipulate cells, but processing methods are typically either optimized for the nano-or microscale. Here, we demonstrate polymeric nanopillar (NP) fabrication using 3D direct laser writing (3D DLW), which offers a rapid prototyping across both size regimes. The NPs are interfaced with NIH3T3 cells and the effect of tuning geometrical parameters of the NP array is investigated. Cells are found to adhere on a wide range of geometries, but the interface depends on NP density and length. The Cell Interface with Nanostructure Arrays (CINA) model is successfully extended to predict the type of interface formed on different NP geometries, which is found to correlate with the efficiency of cell alignment along the NPs. The combination of the CINA model with the highly versatile 3D DLW fabrication thus holds the promise of improved design of polymeric NP arrays for controlling cell growth
Polarization-dependent fluorescence from an anisotropic gold/polymer hybrid nano-emitter
Based on nanoscale photopolymerization triggered by the dipolar surface plasmon mode, we developed a light-emitting gold nanoparticle/Eosin Y-doped polymer hybrid nanostructure. Due to the anisotropic spatial distribution of the dipolar surface plasmon mode during photopolymerization, this nano-emitter is anisotropic in both geometry and emission. The trapped dye molecules in the hybrid nanostructure display fluorescence intensity that is dependent upon the polarization of the incident excitation light. This nano-emitter further allows the photo-selection of fluorescence configuration (i.e., molecule concentration and refractive index of active medium) by controlling the incident polarization. (C) 2014 AIP Publishing LLC
Deep ultraviolet laser direct write for patterning sol-gel InGaZnO semiconducting micro/nanowires and improving field-effect mobility
Deep-UV (DUV) laser was used to directly write indium-gallium-zinc-oxide (IGZO) precursor solution and form micro and nanoscale patterns. The directional DUV laser beam avoids the substrate heating and suppresses the diffraction effect. A IGZO precursor solution was also developed to fulfill the requirements for direct photopatterning and for achieving semi-conducting properties with thermal annealing at moderate temperature. The DUV-induced crosslinking of the starting material allows direct write of semi-conducting channels in thin-film transistors but also it improves the field-effect mobility and surface roughness. Material analysis has been carried out by XPS, FTIR, spectroscopic ellipsometry and AFM and the effect of DUV on the final material structure is discussed. The DUV irradiation step results in photolysis and a partial condensation of the inorganic network that freezes the sol-gel layer in a homogeneous distribution, lowering possibilities of thermally induced reorganization at the atomic scale. Laser irradiation allows high-resolution photopatterning and high-enough field-effect mobility, which enables the easy fabrication of oxide nanowires for applications in solar cell, display, flexible electronics, and biomedical sensors
Direct nanopatterning of 100 nm metal oxide periodic structures by Deep-UV immersion lithography
International audienc
Ultrathin Selective Molecularly Imprinted Polymer Microdots Obtained by Evanescent Wave Photopolymerization
International audienc
Photoinduced modification of the natural biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) microfibrous surface with anthraquinone-derived dextran for biological applications
A straightforward and versatile method for immobilizing polysaccharides on the surface of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) electrospun fibers is developed with the objective of designing a new functional biomaterial having a significant effect on cell proliferation. The approach relies on a one-step procedure: UV grafting of a photosensitive dextran (AQ-Dext) on the surface of PHBHV fibers according to a "grafting onto" method, with the use of an anthraquinone derivative. The photografting is conducted through a photoinduced free radical process employing an anthraquinone-based photosensitizer in aqueous medium. Under appropriate conditions, AQ-Dext reacts with C-H sigma-bonds of the polymer substrate (PHBHV) to produce a semianthraquinone radical according to an H-abstraction reaction. This radical recombines together with the alkylradical (R-center dot) formed at the surface of PHBHV fibers via the oxygen atom of the anthraquinone photolinker. The photochemical mechanism of the AQ-Dext photolysis is entirely described for the first time by an electron spin resonance technique and laser flash photolysis. The modified PHBHV microfibrous scaffolds are extensively characterized by water contact angle measurements, XPS analysis and atomic force microscopy, confirming the covalent grafting of dextran on PHBHV fibers. Finally, a primary investigation demonstrates that dextran modified PHBHV fibers are permissive for optimized cell colonization and proliferation. The cell morphologies are described by SEM micrographs, revealing a significant affinity and favorable interactions for adherence of human mesenchymal stem cells (hMSCs) on scaffolds provided by dextran chemical structure. Moreover, the proliferation rate of hMSCs increases on this new functionalized biomaterial associated with a higher extra-cellular matrix production after 5 days of culture in comparison with native PHBHV fibers
Orienting the Demixion of a Diblock-copolymer Using 193 nm Interferometric Lithography for the Controlled Deposition of Nanoparticles
DUV interferometric lithography and diblock copolymer self-organization have successfully been combined to provide a simple and highly collective nanopatterning technique enabling the organization of nanoparticles over several orders of magnitude, from nanometre to millimetre. The nanostructural changes at the surface of the polymer film after thermal annealing have been monitored by AFM and the process parameters optimized for obtaining a long-range organization of the lamellar domains. In particular, the impact of the annealing conditions and geometric parameters of the substrate patterns have been investigated. The nanopatterns resulting from the lamellar demixion of (PS-b-MMA) were used for a controlled deposition of nanoparticles. The affinity of the hydrophobic particles for the PS block was demonstrated, opening new doors towards the preparation of high-density arrays of nanoparticles with potential applications in data storage
Near-Infrared Laser-Annealed IZO Flexible Device as a Sensitive H2S Sensor at Room Temperature
[[abstract]]A metal-oxide material (indium zinc oxide [IZO]) device with near-infrared (NIR) laser annealing was demonstrated on both glass and bendable plastic substrates (polycarbonate, polyethylene, and polyethylene terephthalate). After only 60 s, the sheet resistance of IZO films annealed with a laser was comparable to that of thermal-annealed devices at temperatures in the range of 200–300 °C (1 h). XPS, ATR, and AFM were used to investigate the changes in the sheet resistance and correlate them to the composition and morphology of the thin film. Finally, the NIR-laser-annealed IZO films were demonstrated to be capable of detecting changes in humidity and serving as a highly sensitive gas sensor of hydrogen sulfide (in ppb concentration), with room-temperature operation on a bendable substrate.[[notice]]補正完