2,392 research outputs found

    Influence of Gypsum Panels on the Response of Cold-Formed Steel Framed Strap-Braced Walls

    Get PDF
    In cold-formed steel construction the steel frame is supplemented with either diagonal strap braces or structural sheathing panels (typically steel or wood) to provide overall stability to the structural system and to directly transfer lateral wind and seismic loads through to the foundation as per the design provisions found in AISI S240 (2015) and AISI S400 (2015). Gypsum panels are often specified to provide a fire-resistance rating for the CFS frame, as well as to ensure that adequate sound-proofing exists between adjacent rooms or building units. The engineer may choose to rely on this gypsum to provide additional lateral resistance, as permitted in the AISI Standards. However, in the majority of cases the gypsum panels are considered to be non-structural elements of the building specified by the architect, and as such, are not taken into account in the design of the lateral load carrying system. Whether considered in the design process or not, these gypsum panels do augment the shear resistance of the lateral load carrying system. This study was carried out to evaluate the performance of combined strap-braced / gypsum-sheathed wall systems, with the intent of defining a corresponding design approach. Described herein are the findings of the laboratory phase of the project, comprising 35 wall specimens

    Multiple equilibrium states of a curved-sided hexagram:Part I-Stability of states

    Full text link
    The stability of the multiple equilibrium states of a hexagram ring with six curved sides is investigated. Each of the six segments is a rod having the same length and uniform natural curvature. These rods are bent uniformly in the plane of the hexagram into equal arcs of 120deg or 240deg and joined at a cusp where their ends meet to form a 1-loop planar ring. The 1-loop rings formed from 120deg or 240deg arcs are inversions of one another and they, in turn, can be folded into a 3-loop straight line configuration or a 3-loop ring with each loop in an "8" shape. Each of these four equilibrium states has a uniform bending moment. Two additional intriguing planar shapes, 6-circle hexagrams, with equilibrium states that are also uniform bending, are identified and analyzed for stability. Stability is lost when the natural curvature falls outside the upper and lower limits in the form of a bifurcation mode involving coupled out-of-plane deflection and torsion of the rod segments. Conditions for stability, or lack thereof, depend on the geometry of the rod cross-section as well as its natural curvature. Rods with circular and rectangular cross-sections will be analyzed using a specialized form of Kirchhoff rod theory, and properties will be detailed such that all four of the states of interest are mutually stable. Experimental demonstrations of the various states and their stability are presented. Part II presents numerical simulations of transitions between states using both rod theory and a three-dimensional finite element formulation, includes confirmation of the stability limits established in Part I, and presents additional experimental demonstrations and verifications

    Multiple equilibrium states of a curved-sided hexagram: Part II-Transitions between states

    Full text link
    Curved-sided hexagrams with multiple equilibrium states have great potential in engineering applications such as foldable architectures, deployable aerospace structures, and shape-morphing soft robots. In Part I, the classical stability criterion based on energy variation was used to study the elastic stability of the curved-sided hexagram and identify the natural curvature range for stability of each state for circular and rectangular rod cross-sections. Here, we combine a multi-segment Kirchhoff rod model, finite element simulations, and experiments to investigate the transitions between four basic equilibrium states of the curved-sided hexagram. The four equilibrium states, namely the star hexagram, the daisy hexagram, the 3-loop line, and the 3-loop "8", carry uniform bending moments in their initial states, and the magnitudes of these moments depend on the natural curvatures and their initial curvatures. Transitions between these equilibrium states are triggered by applying bending loads at their corners or edges. It is found that transitions between the stable equilibrium states of the curved-sided hexagram are influenced by both the natural curvature and the loading position. Within a specific natural curvature range, the star hexagram, the daisy hexagram, and the 3-loop "8" can transform among one another by bending at different positions. Based on these findings, we identify the natural curvature range and loading conditions to achieve transition among these three equilibrium states plus a folded 3-loop line state for one specific ring having a rectangular cross-section. The results obtained in this part also validate the elastic stability range of the four equilibrium states of the curved-sided hexagram in Part I. We envision that the present work could provide a new perspective for the design of multi-functional deployable and foldable structures

    Adjusting bone mass for differences in projected bone area and other confounding variables: an allometric perspective.

    Get PDF
    The traditional method of assessing bone mineral density (BMD; given by bone mineral content [BMC] divided by projected bone area [Ap], BMD = BMC/Ap) has come under strong criticism by various authors. Their criticism being that the projected bone "area" (Ap) will systematically underestimate the skeletal bone "volume" of taller subjects. To reduce the confounding effects of bone size, an alternative ratio has been proposed called bone mineral apparent density [BMAD = BMC/(Ap)3/2]. However, bone size is not the only confounding variable associated with BMC. Others include age, sex, body size, and maturation. To assess the dimensional relationship between BMC and projected bone area, independent of other confounding variables, we proposed and fitted a proportional allometric model to the BMC data of the L2-L4 vertebrae from a previously published study. The projected bone area exponents were greater than unity for both boys (1.43) and girls (1.02), but only the boy's fitted exponent was not different from that predicted by geometric similarity (1.5). Based on these exponents, it is not clear whether bone mass acquisition increases in proportion to the projected bone area (Ap) or an estimate of projected bone volume (Ap)3/2. However, by adopting the proposed methods, the analysis will automatically adjust BMC for differences in projected bone size and other confounding variables for the particular population being studied. Hence, the necessity to speculate as to the theoretical value of the exponent of Ap, although interesting, becomes redundant

    Einstein billiards and spatially homogeneous cosmological models

    Full text link
    In this paper, we analyse the Einstein and Einstein-Maxwell billiards for all spatially homogeneous cosmological models corresponding to 3 and 4 dimensional real unimodular Lie algebras and provide the list of those models which are chaotic in the Belinskii, Khalatnikov and Lifschitz (BKL) limit. Through the billiard picture, we confirm that, in D=5 spacetime dimensions, chaos is present if off-diagonal metric elements are kept: the finite volume billiards can be identified with the fundamental Weyl chambers of hyperbolic Kac-Moody algebras. The most generic cases bring in the same algebras as in the inhomogeneous case, but other algebras appear through special initial conditions.Comment: 27 pages, 10 figures, additional possibility analysed in section 4.3, references added, typos correcte
    • 

    corecore