23 research outputs found

    Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs

    Full text link
    Life-threatening `breakthrough' cases of critical COVID-19 are attributed to poor or waning antibody response to the SARS- CoV-2 vaccine in individuals already at risk. Pre-existing autoantibodies (auto-Abs) neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals; however, their contribution to hypoxemic breakthrough cases in vaccinated people remains unknown. Here, we studied a cohort of 48 individuals ( age 20-86 years) who received 2 doses of an mRNA vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Antibody levels to the vaccine, neutralization of the virus, and auto- Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal antibody response to the vaccine. Among them, ten (24%) had auto-Abs neutralizing type I IFNs (aged 43-86 years). Eight of these ten patients had auto-Abs neutralizing both IFN-a2 and IFN-., while two neutralized IFN-omega only. No patient neutralized IFN-ss. Seven neutralized 10 ng/mL of type I IFNs, and three 100 pg/mL only. Seven patients neutralized SARS-CoV-2 D614G and the Delta variant (B.1.617.2) efficiently, while one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only 100 pg/mL of type I IFNs neutralized both D61G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating antibodies capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a significant proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population

    Neutrophil Activation and Immune Thrombosis Profiles Persist in Convalescent COVID-19

    No full text
    International audiencePurpose Following a severe COVID-19 infection, a proportion of individuals develop prolonged symptoms. We investigated the immunological dysfunction that underlies the persistence of symptoms months after the resolution of acute COVID-19. Methods We analyzed cytokines, cell phenotypes, SARS-CoV-2 spike-specific and neutralizing antibodies, and whole blood gene expression profiles in convalescent severe COVID-19 patients 1, 3, and 6 months following hospital discharge. Results We observed persistent abnormalities until month 6 marked by (i) high serum levels of monocyte/macrophage and endothelial activation markers, chemotaxis, and hematopoietic cytokines; (ii) a high frequency of central memory CD4 + and effector CD8 + T cells; (iii) a decrease in anti-SARS-CoV-2 spike and neutralizing antibodies; and (iv) an upregulation of genes related to platelet, neutrophil activation, erythrocytes, myeloid cell differentiation, and RUNX1 signaling. We identified a “core gene signature” associated with a history of thrombotic events, with upregulation of a set of genes involved in neutrophil activation, platelet, hematopoiesis, and blood coagulation. Conclusion The lack of restoration of gene expression to a normal profile after up to 6 months of follow-up, even in asymptomatic patients who experienced severe COVID-19, signals the need to carefully extend their clinical follow-up and propose preventive measures

    Oropharyngeal and intestinal concentrations of opportunistic pathogens are independently associated with death of SARS-CoV-2 critically ill adults

    No full text
    International audienceBackground The composition of the digestive microbiota may be associated with outcome and infections in patients admitted to the intensive care unit (ICU). The dominance by opportunistic pathogens (such as Enterococcus ) has been associated with death. However, whether this association remains all throughout the hospitalization are lacking. Methods We performed a single-center observational prospective cohort study in critically ill patients admitted with severe SARS-CoV-2 infection. Oropharyngeal and rectal swabs were collected at admission and then twice weekly until discharge or death. Quantitative cultures for opportunistic pathogens were performed on oropharyngeal and rectal swabs. The composition of the intestinal microbiota was assessed by 16S rDNA sequencing. Oropharyngeal and intestinal concentrations of opportunistic pathogens, intestinal richness and diversity were entered into a multivariable Cox model as time-dependent covariates. The primary outcome was death at day 90. Results From March to September 2020, 95 patients (765 samples) were included. The Simplified Acute Physiology Score 2 ( SAPS 2) at admission was 33 [24; 50] and a Sequential Organ Failure Assessment score (SOFA score) at 6 [4; 8]. Day 90 all-cause mortality was 44.2% (42/95). We observed that the oropharyngeal and rectal concentrations of Enterococcus spp., Staphylococcus aureus and Candida spp. were associated with a higher risk of death. This association remained significant after adjustment for prognostic covariates (age, chronic disease, daily antimicrobial agent use and daily SOFA score). A one-log increase in Enterococcus spp . , S. aureus and Candida spp. in oropharyngeal or rectal swabs was associated with a 17% or greater increase in the risk of death. Conclusion We found that elevated oropharyngeal/intestinal Enterococcus spp. S. aureus and Candida spp. concentrations, assessed by culture, are associated with mortality, independent of age, organ failure, and antibiotic therapy, opening prospects for simple and inexpensive microbiota-based markers for the prognosis of critically ill SARS-CoV-2 patients

    Potent human broadly SARS-CoV-2–neutralizing IgA and IgG antibodies effective against Omicron BA.1 and BA.2

    No full text
    International audienceMemory B-cell and antibody responses to the SARS-CoV-2 spike protein contribute to long-term immune protection against severe COVID-19, which can also be prevented by antibody-based interventions. Here, wide SARS-CoV-2 immunoprofiling in Wuhan COVID-19 convalescents combining serological, cellular, and monoclonal antibody explorations revealed humoral immunity coordination. Detailed characterization of a hundred SARS-CoV-2 spike memory B-cell monoclonal antibodies uncovered diversity in their repertoire and antiviral functions. The latter were influenced by the targeted spike region with strong Fc-dependent effectors to the S2 subunit and potent neutralizers to the receptor-binding domain. Amongst those, Cv2.1169 and Cv2.3194 antibodies cross-neutralized SARS-CoV-2 variants of concern, including Omicron BA.1 and BA.2. Cv2.1169, isolated from a mucosa-derived IgA memory B cell demonstrated potency boost as IgA dimers and therapeutic efficacy as IgG antibodies in animal models. Structural data provided mechanistic clues to Cv2.1169 potency and breadth. Thus, potent broadly neutralizing IgA antibodies elicited in mucosal tissues can stem SARS-CoV-2 infection, and Cv2.1169 and Cv2.3194 are prime candidates for COVID-19 prevention and treatment

    High-risk exposure without personal protective equipment and infection with SARS-CoV-2 in-hospital workers - The CoV-CONTACT cohort.

    No full text
    International audienc

    High-risk exposure without personal protective equipment and infection with SARS-CoV-2 in-hospital workers - The CoV-CONTACT cohort

    No full text
    International audienc

    High-risk exposure without personal protective equipment and infection with SARS-CoV-2 in-hospital workers - The CoV-CONTACT cohort

    No full text
    International audienc

    Performance of Repeated Measures of (1–3)-ÎČ-D-Glucan, Mannan Antigen, and Antimannan Antibodies for the Diagnosis of Invasive Candidiasis in ICU Patients: A Preplanned Ancillary Analysis of the EMPIRICUS Randomized Clinical Trial

    No full text
    International audienceBackground. We aimed to assess the prognostic value of repeated measurements of serum (1-3)-ÎČ-D-glucan (BDG), mannanantigen (mannan-Ag), and antimannan antibodies (antimannan-Ab) for the occurrence of invasive candidiasis (IC) in a high-risk nonimmunocompromised population. Methods. This was a preplanned ancillary analysis of the EMPIRICUS Randomized Clinical Trial, including nonimmunocompromised critically ill patients with intensive care unit-acquired sepsis, multiple Candida colonization, and multiple organ failure who were exposed to broad-spectrum antibacterial agents. BDG (>80 and >250 pg/mL), mannan-Ag (>125 pg/ mL), and antimannan-Ab (>10 AU) were collected repeatedly. We used cause-specific hazard models. Biomarkers were assessed at baseline in the whole cohort (cohort 1). Baseline covariates and/or repeated measurements and/or increased biomarkers were then studied in the subgroup of patients who were still alive at day 3 and free of IC (cohort 2). Results. Two hundred thirty-four patients were included, and 215 were still alive and free of IC at day 3. IC developed in 27 patients (11.5%), and day 28 mortality was 29.1%. Finally, BDG >80 pg/mL at inclusion was associated with an increased risk of IC (CSHR[IC], 4.67; 95% CI, 1.61-13.5) but not death (CSHR[death], 1.20; 95% CI, 0.71-2.02). Conclusions. Among high-risk patients, a first measurement of BDG >80 pg/mL was strongly associated with the occurrence of IC. Neither a cutoff of 250 pg/mL nor repeated measurements of fungal biomarkers seemed to be useful to predict the occurrence of IC. The cumulative risk of IC in the placebo group if BDG >80 pg/mL was 25.39%, which calls into question the efficacy of empirical therapy in this subgroup
    corecore