26 research outputs found

    Inflammation recapitulates the ontogeny of lymphoid stromal cells.

    No full text
    International audienceStromal cells in lymphoid tissues regulate lymphocyte recruitment and survival through the expression of specific chemokines and cytokines. During inflammation, the same signals recruit lymphocytes to the site of injury; however, the "lymphoid" stromal (LS) cells producing these signals remain poorly characterized. We find that mouse inflammatory lesions and tumors develop gp38(+) LS cells, in recapitulation of the development of LS cells early during the ontogeny of lymphoid organs and the intestine, and express a set of genes that promotes the development of lymphocyte-permissive tissues. These gp38(+) LS cells are induced by a robust pathway that requires myeloid cells but not known Toll- or NOD-like receptors, the inflammasome, or adaptive immunity. Parabiosis and inducible genetic cell fate mapping experiments indicate that local precursors, presumably resident fibroblasts rather that circulating precursors, massively proliferate and give rise to LS cells during inflammation. Our results show that LS cells are both programmed during ontogeny and reinduced during inflammation

    CD34+ mesenchymal cells are a major component of the intestinal stem cells niche at homeostasis and after injury.

    No full text
    International audienceThe intestinal epithelium is continuously renewed by intestinal epithelial stem cells (IESCs) positioned at the base of each crypt. Mesenchymal-derived factors are essential to maintain IESCs; however, the cellular composition and development of such mesenchymal niche remains unclear. Here, we identify pericryptal CD34(+) Gp38(+) αSMA(-) mesenchymal cells closely associated with Lgr5(+) IESCs. We demonstrate that CD34(+) Gp38(+) cells are the major intestinal producers of the niche factors Wnt2b, Gremlin1, and R-spondin1, and are sufficient to promote maintenance of Lgr5(+) IESCs in intestinal organoids, an effect mainly mediated by Gremlin1. CD34(+) Gp38(+) cells develop after birth in the intestinal submucosa and expand around the crypts during the third week of life in mice, independently of the microbiota. We further show that pericryptal CD34(+)gp38(+) cells are rapidly activated by intestinal injury, up-regulating niche factors Gremlin1 and R-spondin1 as well as chemokines, proinflammatory cytokines, and growth factors with key roles in gut immunity and tissue repair, including IL-7, Ccl2, Ptgs2, and Amphiregulin. Our results indicate that CD34(+) Gp38(+) mesenchymal cells are programmed to develop in the intestine after birth to constitute a specialized microenvironment that maintains IESCs at homeostasis and contribute to intestinal inflammation and repair after injury

    Excess calorie intake early in life increases susceptibility to colitis in adulthood

    No full text
    Correction de l'éditeur : https://doi.org/10.1038/s42255-019-0144-6International audienceEpidemiological data reveal an association between obesity and inflammatory bowel disease (IBD). Furthermore, animal models demonstrate that maternal high-fat diet (HFD) and maternal obesity increase susceptibility to IBD in offspring. Here we report that excess calorie intake by neonatal mice, as a consequence of maternal HFD, forced feeding of neonates or low litter competition, leads to an increase during weaning in intestinal permeability, expression of pro-inflammatory cytokines and hydrogen sulfide production by the microbiota. These intestinal changes engage in mutual positive feedback that imprints increased susceptibility to colitis in adults. The pathological imprinting is prevented by the neutralization of IFN-γ and TNF-α or the production of hydrogen sulfide, or by normalization of intestinal permeability during weaning. We propose that excess calorie intake by neonates leads to multiple causally linked perturbations in the intestine that imprint the individual with long-term susceptibility to IBD

    TCR sequences and tissue distribution discriminate the subsets of naĂŻve and activated/memory Treg cells in mice

    No full text
    Analyses of the regulatory T (Treg) cell TCR repertoire should help elucidate the nature and diversity of their cognate antigens and thus how Treg cells protect us from autoimmune diseases. We earlier identified CD44hiCD62Llow activated/memory (am) Treg cells as a Treg-cell subset with a high turnover and possible self-specificity. We now report that amTreg cells are predominantly distributed in lymph nodes (LNs) draining deep tissues. Multivariate analyses of CDR3 spectratyping first revealed that amTreg TCR repertoire is different from that of naïve Treg cells (nTreg cells) and effector T (Teff) cells. Furthermore, in deep- versus superficial LNs, TCR-β deep sequencing further revealed diversified nTreg-cell and amTreg-cell repertoires, although twofold less diverse than that of Teff cells, and with repertoire richness significantly lower in deep-LN versus superficial-LN Treg cells. Importantly, expanded clonotypes were mostly detected in deep-LN amTreg cells, some accounting for 20% of the repertoire. Strikingly, these clonotypes were absent from nTreg cells, but found at low frequency in Teff cells. Our results, obtained in nonmanipulated mice, indicate different antigenic targets for naïve and amTreg cells and that amTreg cells are self-specific. The data we present are consistent with an instructive component in Treg-cell differentiation

    A TCRβ Repertoire Signature Can Predict Experimental Cerebral Malaria

    No full text
    International audienceCerebral Malaria (CM) is associated with a pathogenic T cell response. Mice infected by P. berghei ANKA clone 1.49 (PbA) developing CM (CM +) present an altered PBL TCR repertoire, partly due to recurrently expanded T cell clones, as compared to non-infected and CM-infected mice. To analyse the relationship between repertoire alteration and CM, we performed a kinetic analysis of the TRBV repertoire during the course of the infection until CM-related death in PbA-infected mice. The repertoires of PBL, splenocytes and brain lympho-cytes were compared between infected and non-infected mice using a high-throughput CDR3 spectratyping method. We observed a modification of the whole TCR repertoire in the spleen and blood of infected mice, from the fifth and the sixth day post-infection, respectively, while only three TRBV were significantly perturbed in the brain of infected mice. Using multivariate analysis and statistical modelling, we identified a unique TCRβ signature discriminating CM + from CTR mice, enriched during the course of the infection in the spleen and the blood and predicting CM onset. These results highlight a dynamic modification and compartmentaliza-tion of the TCR diversity during the course of PbA infection, and provide a novel method to identify disease-associated TCRβ signature as diagnostic and prognostic biomarkers

    Cutting edge: CD4-independent development of functional FoxP3+ regulatory t cells.

    No full text
    International audienceThe CD4 coreceptor is mandatory for the differentiation and function of conventional MHC class II-restricted T cells, but little is known about its contribution in regulatory T cells (Tregs). We thus investigated the Treg compartment in mice lacking CD4. CD3+CD8-FoxP3+ cells were readily detected in the periphery of CD4(-/-) mice, where their percentages were even increased as compared with wild-type animals. These cells had a classical CD25+CD152+GITR+ Treg phenotype, were enriched in memory-type Tregs, and displayed a diversified TCR repertoire. Functionally, CD4(-/-) Tregs were equally as suppressive as CD4(+/+) Tregs in vitro as well as in vivo. Hence, the CD4 coreceptor is dispensable for the generation and function of FoxP3+ Tregs. Furthermore, CD3+CD8-FoxP3+ Tregs were also found to develop in the absence of both CD4 and MHC-II molecules, demonstrating that the generation of Tregs can occur independently of MHC-II recognition

    A Weaning Reaction to Microbiota Is Required for Resistance to Immunopathologies in the Adult

    No full text
    International audienceMicrobes colonize all body surfaces at birth and participate in the development of the immune system. In newborn mammals, the intestinal microbiota is first shaped by the dietary and immunological components of milk and then changes upon the introduction of solid food during weaning. Here, we explored the reactivity of the mouse intestinal immune system during the first weeks after birth and into adulthood. At weaning, the intestinal microbiota induced a vigorous immune response—a “weaning reaction”—that was programmed in time. Inhibition of the weaning reaction led to pathological imprinting and increased susceptibility to colitis, allergic inflammation, and cancer later in life. Prevention of this pathological imprinting was associated with the generation of RORγt+ regulatory T cells, which required bacterial and dietary metabolites—short-chain fatty acids and retinoic acid. Thus, the weaning reaction to microbiota is required for immune ontogeny, the perturbation of which leads to increased susceptibility to immunopathologies later in life
    corecore